THE ELECTRICAL PROPERTIES OF SOLID OXIDE ELECTROLYTES

T. H. ETSELL **AND S.** N. FLENGAS

Department of Metallurgy and Materials Science, University of Toronto, Toronto 5, Ontario, Canada

Received May **7,** *1969 (Revised Manuscript Received Ocrohvr 20, 1969)*

Contents

1. introduction

During the past **12** years, the potentialities of oxygen-ion conducting solid electrolytes have been realized. They have been used in the construction of galvanic cells for measuring the thermodynamic and kinetic properties of oxygen-bearing systems with high accuracies, in the development of oxygen meters for both gas mixtures and liquid metals, and in the investigation of high-temperature fuel cells.

The most successful oxide electrolytes have been those based on one of the group IVB oxides ZrO₂, HfO₂, CeO₂, or ThO₂ having additions of either an alkaline earth oxide, Sc_2O_3 , Y_2O_4 , or a rare earth oxide. When solid solutions are formed in these systems, the presence of the di- or trivalent caticns on the cation sublattice causes the formation of anion vacancies to preserve electrical neutrality. The resulting increase in the oxygen ion conductivity can lead to exclusively imic conduction within certain ranges of temperature and oxygen pressure.

Although the suitability of an oxide system as a solid electrolyte is determined, in part, by properties such as permeatility, thermal shock resistance, and resistance to chemical attack by electrode materials, ionic conductivities and transport numbers are the most important criteria. Consequently, this review deals mainly with the electrical properties of these solid solutions and indicates where further research is required. Regions of solid solubility as well as applications are presented. In addition, solid solutions based on Sc_2O_3 , Y_2O_3 , or a rare earth oxide are considered. Fina!iy, ionic transport numbers of pure refractory oxides are briefly discussed.

All compositions will be given in terms of mole $\%$ and all temperatures in $\mathrm{^{\circ}C}.$

A. PHASE STUDIES

For an oxide system to be a potential electrolyte, some solid solubility must be exhibited. In this regard, both electronegntivity and cation field strength are important parameters. The latter is defined as Z/a^2 , where Z is the valence of the cation and *a* is the separation distance between the cation and the anion. However, the presence or absence of significant solid solubility can usually be predicted from the similarity of the cation radii.

Stabilized ZrO₂, stabilized HfO₂, CeO₂, and ThO₂ have the cubic fluorite structure in which the cations have eightfold coordination. Moebius¹ has deduced a set of radii for the fluorite lattice based on a radius of **1.27 A** for the *02-* ion, determined from separation distances between them and the geometry of the fluorite structure. These are shown in Table I along with the radii given by Ahrens² for sixfold coordination. The latter should be more applicable for the rare earth oxide structures in which the cations are coordinated to either six or seven anions.

B. ELECTRICAL CONDUCTIVITY MEASUREMENTS

Unfortunately, conductivity measurements on ceramic oxide systems are beset with many difficulties. Because of their high melting points *(>2500°),* samples are usually prepared by pressing and sintering powders. Homogeneous specimens having the equilibrium phase or phases at the sintering temperature are often difficult to achieve. Even if equilibrium is attained, the phases may be metastable at the measuring temperatures since phase boundaries are often strongly dependent on temperature. Also, the polycrystalline samples will possess regions of varying conductivity such as grain boundaries, internal surfaces due to porosity, and particle-to-particle contacts. These low-conductivity regions may often be effectively "shorted-out" to yield the bulk conductivity by the use of high measuring frequencies.

Another difficulty, arising in the case of ionic conductors, is polarization at the electrodes. If *02-* ions arrive at an electrode and are unable to discharge because of the presence of concentration or activation polarization, their concentration will build up and impede the approach of additional carriers. This effect produces an additional resistance which is dependent on frequency, temperature, oxygen pressure, and the electrode material. **3--6** At sufficiently high frequencies **(>150O** cps), only the bulk resistance and a double layer capacity will normally be measured.

Other factors to be considered include contact resistance, electrical pickup from furnace windings, thermoelectric effects, surface conduction, and thermionic emission from the sample, lead wires, or furnace walls. Surface conduction, often aided by the presence of adsorbed gases, and thermionic emission can be eliminated by the use of three-probe measurements whereby a guard ring is placed around one of the electrodes

and maintained at the same potential as the guarded electrode. Contact resistance can be avoided with four-probe measurements whereby a current is passed through the ends of the sample and the potential drop across a fixed length is recorded. Two-probe measurements are useful because of their simplicity and can yield quite accurate data at relatively low temperatures **(<1400")** provided that the problem of contact resistance can be overcome.

Of course, impurities can, and often do, influence electrical conductivities markedly. Nevertheless, their effect is minimal in oxide electrolytes possessing large defect concentrations.

C. TRANSPORT NUMBER DETERMINATIONS

Several techniques have been used to separate the ionic and electronic contributions to the conductivity. **A** sample can be electrolyzed between reversible metal or oxygen electrodes, and the quantity of matter transferred is measured and compared to the current passed. Alternately, electrolysis can be carried out with two or more oxide pellets in series and weight losses or gains are recorded. The latter method permits the cation and anion contributions to be separated.

The usual technique is the emf method. When two different oxygen potentials are imposed on the faces of a mixed conductor, then

$$
t_i = E_{\text{meas}}/E_{\text{thermo}} \tag{1}
$$

where i_i is the average ionic transport number between the oxygen potentials defined at the electrodes, E_{meas} is the measured emf, and E_{thermo} is the thermodynamic emf calculated for the case where t_i is 1. In the presence of electronic conductivity, open-circuit oxygen transfer occurs from the highpotential to the low-potential side. The electrodes may become polarized and the emf will drop below the true value. Consequently, this method is often only accurate when E_{thermo} is small and $\bar{t}_i > 0.9$.

Since the ionic defect concentration is controlled by composition, ionic conductivity will be independent of oxygen pressure. However, the number of electronic defects will be markedly influenced by small deviations from stoichiometry and, consequently, will be dependent on oxygen pressure. Therefore, transport numbers can be determined by analyzing curves of conductivity *us.* oxygen pressure.

Partial conductivities can sometimes be measured *via* polarization techniques. One reversible electrode and one electrode blocking to either ions or electrons are used. A small dc voltage is applied which fixes the oxygen potential at the irreversible electrode, and the conductivity is measured as a function of time. If an ionic block is used, interference from gas-electrode reactions is hard to avoid, and the method becomes inaccurate for low electronic transport numbers.

⁽I) H.-H. Moebius,Z. *Chem.,4,81(1964).*

⁽²⁾ L. H. Ahrens, *Geochim. Cosmochim. Acta,* **2,155** *(1952).*

⁽³⁾ H.-H. Moebius and B. Rohland, *2. Chem., 6,158 (1966),*

⁽⁴⁾ R. Hartung and **H.-H.** Moebius, *ibid., 7.325 (1967).*

⁽⁵⁾ **H.** Peters and K. H. Radeke, *Monatsber. Deur. Akad. Wiss. Berlin, 10,819 (1968).*

For fairly large ionic transport numbers, oxygen permeability measurements an be used providing that sufficiently dense material is available so that transport through pores does not interfere. The individual ionic contributions can be separated by measuring diffusion coefficients and calculating partial conductivities from the Nernst-Einstein relation. Also, if one cation is mobile relative to another, electrolysis at a high oxygen pressure will produce some compositional changes at the electrode-electrolyte interfaces.

11. Zr0,-CaO Electrolytes

A. STABILIZATION OF ZrO₂

Both $ZrO₂$ and solid solutions based on $ZrO₂$ have been studied extensively, for $ZrO₂$ is an extremely important refractory. Below 1000°, it has a monoclinic structure and, above 1200°, a tetragonal structure. In addition, a cubic modification exists above 2300°, although considerable disagreement has arisen over this phase.^{6,7} Nevertheless, $ZrO₂$ can be readily stabilized in the cubic form by the addition of many different metal oxides.

In 1929, Ruff and Ebert⁸ postulated that an oxide could stabilize ZrO_2 if its cation radius was similar to that of Zr^{4+} and it had a cubic structure. Dietzel and Tober⁹ included the requirement that the metal-oxygen bonds of the oxide must be more ionic than those of ZrO_2 . More recently, Stöcker¹⁰ considered the various oxides capable of stabilizing cubic $ZrO₂$ and reached the following conclusions: (a) the oxides have the general form MO_n ($n < 2$) and cause the formation of vacancies in the anion sublattice; (b) the solid solutions have a eutectoid temperature and the lower this temperature, the more stable they will be; (c) the cubic phase will be very stable if the cation of stabilizing oxide is strongly electropositive. For the fluorite structure to be stable, the ratio of the cation to the anion radius must be greater than 0.732. For ZrO₂, this ratio is **0.724** based on the radii recommended by Moebius.1 Evidently, cations larger than Zr^{4+} must be used. However, this is not essential since the presence of anion vacancies tends to stabilize the fluorite phase. The required close-packed structure for the cations will be favored since the repulsion energy between the anions will be reduced.

B. ELECTROLYTE PREPARATION

A highly important, but often underestimated, part of investigations involving oxide electrolytes concerns the preparation of the solid solutions. **A** considerable amount of erroneous data has been reported concerning the phase diagrams and electrical properties of these refractory systems because of a failure to achieve equilibrium during the preparation of the samples. During solid-state reactions, equilibrium is often attained only with great difficulty. For instance, direct mixing of the oxides necessitates the use of very high sintering temperatures. Melting may introduce errors due to reactions with crucible materials or vaporization losses. The sintering temperature can be greatly reduced if the oxide powders are finely divided, intimately mixed, and very reactive. This situation can often be realized by evaporating a nitrate mixture to

-
- **(8)** *0.* **Ruff and F. Ebert,** *2. Anorg. Allg. Chem.,* **180,19 (1929).**
- **(9) A. Dietzel and H. Tober,** *Ber. Deur. Keram. Ges.,* **30,47,71(1953).**
- **(IO) J. Stocker,** *Bull.* **SOC.** *Chim.Fr.,* **78(1961).**

dryness or coprecipitating the required metal cations as hydroxides or oxalates.

Many solid solutions and compounds based on $ZrO₂$ have been formed at only 500-800° *via* hydroxide coprecipitation.^{11,12} The amorphous precipitates were very reactive, and phases stable at high temperatures could be produced metastably. Solid solutions are formed during coprecipitation rather than during crystallization.^{13,14} Submicron, reactive oxide powders have been prepared by the thermal decomposition of metal alkoxides.^{15,16} Cubic $ZrO₂$ could be obtained at room temperature,'5 while fully stabilized solid solutions were formed at only 850°.16 To avoid contamination, dense homogenous samples of stabilized $ZrO₂$ have been produced by induction melting without a crucible.^{17,18} Finally, ZrO_z-CaO single crystals have been obtained by cooling slowly from a melt. 19

C. PHASE BOUNDARIES OF THE SOLID SOLUTIONS

Since the pioneering work of Ruff, Ebert, and Stephan,²⁰ considerable disagreement has arisen concerning the phase

Table I1

~ ~ ~~ **(11) J. Stocker and R. Collongues, C.** *R. Acad., Sci., Paris,* **245, 431 (1957); J. Stocker, R. Collongues, and M. Moser,** *Silicares Znd.,* **23, 67 (195 8).**

(12) *J.* **Stocker,** *Ann. Chim.* **(Paris), 5,1459 (1960).**

⁽⁶⁾ D. K. Smith and C. F. Cline,J. *Amer. Ceram.* **Soc., 45,249 (1962). (7) B. C. Weber, ibid.,45,614(1962).**

⁽¹³⁾ J. Lefevre, R. Collongues, and F. Leprince-Ringuet, C. *R* **Acad.** *Sci, Paris,* **253, 1334 (1961); E. K. Keler and V. B. Glushkova,** *Sci. Ceram.,* **4,233 (1968).**

⁽¹⁴⁾ J.Lefevre, *Ann. Chim.(Paris),* **8,117(1963).**

⁽¹⁵⁾ K. S. Mazdiyasni, C. T. Lynch, and J. S. Smith, *J. Amer. Ceram.* Soc., 48, 372 (1965).

⁽¹⁶⁾ K. S. Mazdiyasni,C. T.Lynch, and J. S. Smith, ibid., 50,532(1967).

⁽¹⁷⁾ M. Perez y Jorba and R. Collongues, C. *R. Acad. Sci., Paris,* **257, 1091 (1963).**

⁽¹⁸⁾ **C. Deportes, B. Lorang, and G. Vitter,** *Reu. Haures* **Temp.** *Refract.,* **2,159 (1965).**

⁽¹⁹⁾ D. Michel, M. Perez y Jorba, and R. Collongues, *C. R.* **Acad.** *Sci.. Paris,* **266,1602(1968).**

⁽²⁰⁾ *0.* **Ruff, F. Ebert, and E. Stephan,** *2. Anorg. Allg. Chem.,* **180,215 (1929).**

⁽²¹⁾ F. Hund, *2. Phys. Chem.* **(Leipzig), 199,142 (1952).**

⁽²²⁾ P. Duwez, F. Odell, and F. H. Brown,J. *Amer. Ceram.* **SOC., 35,107** (**1952).**

boundaries of the single-phase fluorite region. This is indicated in Table I1 where the relevant data are chronologically presented. Boundaries of 12 and 20 *x* CaO seem to best represent the results. Dixon, *et al.*,³⁷ placed the lower limit at 12% CaO at 1700°, while monoclinic ZrO₂ and CaZrO₃ were ob-t served in samples containing 9.4 and 20.5 $\%$ CaO, respectively, which were sintered at 2050°.³⁴ Only 7 or 8%. CaO is needed to stabilize cubic $ZrO₂$ near the melting point,^{12,33} but the tetragonal solid solution precipitates readily at lower temperatures. The relatively good agreement for the upper limit at 20% CaO suggests the possibility of the compound CaZr₄O₉. Although the existence of this compound has been con sidered,^{85,38} it has never been identified. The monoclinic CaHf₄O₉ compound exists below 1450 $^{\circ}$, but the existence of $CaZr₄O₉$ could not be affirmed.³⁹ Replacement of Hf⁴⁺ ions with Zr^{4+} ions in CaHf₄O₉ lowers the upper temperature limit at which the compound can exist. In the case of $CaZr₄O₉$, this temperature may be too low to permit its formation. **³⁹**

D. STABILITY OF THE SOLID SOLUTIONS

During the reaction of ZrO_2 and CaO, the compound CaZrO₃ first forms and then reacts with excess $ZrO₂$.⁴⁰ Although the compound may begin to form around 800°, temperatures of 1400-1500" may be required to form the solid solution. If the compound is not completely removed during the firing operation, only partly stabilized $ZrO₂$ will result. The monoclinictetragonal transformation of $ZrO₂$ will then force CaO out of the cubic solid solution and the latter appears unstable.41 The presence of impurities also significantly aids the decomposition process. **42-44** Undoubtedly, these factors have contributed to

- **(24)** A. **I.** Avgustinik and N. S. Antselevich, *Zh. Fiz. Khim.,* **27, 973 (1953).**
- **i25)** A. Rabenau, *Z. Anorg. Allg. Chem.,* **288,221 (1956).**
- **(26)** A. Cocco, *Chim. Znd.* (Milan), **41,882 (1959).**
- **(27)** *2.* **S.** Volchenkova and **S.** F. Pal'guev in "Electrochemistry of Molten and Solid Electrolytes," Vol. 1, Consultants Bureau, New York, N. Y., **1961, p 97.**
- **(28)** T. Y. Tien and E. C. Subbarao,J. *Chem. Phys.,* **39,1041 (1963).**
- **(29)** H. A. Johansen and J. G. Cleary, *J. Electrochem.* **Soc., 111, 100** (**1964).**
- **(30)** D. **W.** Strickler and **W.** G. Carlson, *J. Amer. Ceram. SOC.,* **47, 122** (**1964).**
- **(3** 1 **R.** Roy, H. Miyabe, and A. M. Diness, *Bull. Amer. Ceram. Soc.,* **43, 252(1964);** R.Roy, *Bull.* **SOC.** *Chim. Fr.,* **1149 (1965).**
- **(32) 1.** Barbariol, *Ann. Chim.* (Rome), **55,321 (1965).**
- **(33)** T. Noguchi, M. Mizuno, and W. M. Conn, *Solar Energy,* **11, 145**
- (1967).
(34) R. E. Carter and W. L. Roth in "Electromotive Force Measure-
ments in High-Temperature Systems," C. B. Alcock, Ed., Institution of ments in High-Temperature Systems," C. B.
Mining and Metallurgy, London, 1968, p 125.
- **(35)** R. **C.** Garvie,J. *Amer. Ceram.* **SOC., SI, 553 (1968).**
- **(36) W.** Baukal and R. Scheidegger, *Ber. Deut. Keram.* **Ges., 45, 610 (1968).**
- **(37)** J. M. Dixon, L. D. LaGrange, U. Merten, C. F. Miller, and **J.** T. Porter, *J. Electrochem. Soc.,* **110,276 (1963).**
- **(38)** Y. A. Pyatenko, *Zh. Strukt. Khim.,* **4,708 (1963).**
- **(39)** C. Delamarre and M. Perez y Jorba, *C. R. Acad. Sci., Paris,* **261, 5128(1965):** *Rev. HautesTemn* **Refract..2.313(1965).**
- (40) E. K. Keler and N. A. Godina, *Dokl. Akad. Nauk SSSR*, 103, 247 (1955); M. Bartuska, *Silikattechnik*, 17, 79 (1966); T. Nishino and Y. Yoshino, J. Chem. Soc. Jap., Ind. Chem. Sect., 70, 1088 (1967); A. F. Bessonov a
- **(41)** J. **D.** Buckley, *NASA Tech. Note,* **D-1595 (1962);** J. D. Buckley and
- **H. H. Wilson, J. Amer. Ceram. Soc., 46, 510(1963).** *(42)* **N. A. Godina and E. K. Keler, Ogneupory, 26, 426(1961). (42) N.** A. Godina and E. K. Keler, *Ogneupory,* **26,426 (1961).**
- **(43) T. W.** Smoot and D. F. King, *IEEE Trans. Aerosp.,* **AS-1, 1192** (**1963).**
- **(44) I. M.** Demonis and R. *Y.* Popil'skii, *Tr. Mosk. Khim.-Tekhnol. Znst.,* **No.55.151(1967);** *Chem.Abstr,68,116936(1968).*

erroneous information concerning the instability of $ZrO₂-CaO$ solid solutions.^{42,45,46} Even partly stabilized $ZrO₂$ containing only 0.2% total impurities destabilized very little during thermal cycling. **⁴⁷**

The question of stability can best be answered by considering the eutectoid temperature for this system below which the cubic phase is unstable. Eutectoid temperatures and compositions have been given as 850° ,¹² 800° and 15% CaO,³¹ and 1230" and **20%** Ca0.35 Garvie36 has suggested that the disagreement evident in Table I1 can, in part, be accounted for by the metastable existence of the cubic phase. Therefore, phase boundaries which are too wide will result from sintering at a high temperature and then annealing at lower temperatures. Consequently, he heated reactive oxides directly to 1300- 1700° and then quenched them to room temperature. However, equilibrium may not be established at the lower temperatures for he has shown boundaries of only $16-17$ and 20% CaO at 1300 $^{\circ}$. The eutectoid temperature of 1230 $^{\circ}$ was obtained by an extrapolation which does not appear justified. **⁸⁵** Roy, Miyabe, and Diness³¹ catalyzed the reactions with hightemperature, high-pressure water to produce their phase diagram. They may have achieved the true equilibrium situation which could not be realized without a catalyst. There is additional evidence to support their low eutectoid temperature. Theoretical considerations indicate that CaO should be the most effective stabilizing oxide for $ZrO₂$.¹² Heating for 520 hr at 1200°,22 350 hr at 1200°,32 100 hr at 1180°,48 800 hr at 1100°,22 2000 hr at 815°,22 and 3000 hr at 700" **32** did nDt destroy fully stabilized $ZrO₂$. If the eutectoid temperature were around 1200°, some decomposition might be expected upon annealing at 1000–1150°. Therefore, ZrO_z –CaO solid solutions are thermodynamically stable above about 900° and kinetically stable below this temperature. Even the very unstable $ZrO₂ - MgO$ solid solutions could not be decomposed at 815° .²²

E. LATTICE PARAMETERS

Reported lattice parameters, taken either directly from tables or interpolated from graphs, are shown in Table 111. To facilitate comparison, values for the 15% CaO composition are given whenever possible. **A** lattice parameter of 5.131 *b;* for this composition agrees with most of the results. The lattice parameter increases linearly with CaO content across the cubic phase field. The obviously low values^{21,22,24,26,54} may partly be accounted for by incomplete solution of CaO into the fluorite phase.

F. IONIC CONDUCTIVITIES

Electrical conductivity data for ZrO_z-CaO electrolytes are chronologically presented in Table IV. The values were interpolated from graphs or calculated from equations of the **form**

$$
\sigma = Ae^{-\Delta H/RT}
$$
 (2)

where \vec{A} is approximately independent of temperature (ohm⁻¹) cm^{-1}) and ΔH is the activation enthalpy (kcal/mol). The max-

(47) T. **W.** Smoot and D. *S.* Whittemore, *J. Amer. Ceram. SOC.,* **48, 163 (1965).**

⁽²³⁾ *F.* Trombe and M. Foex, C. *R. Acad. Sci., Paris,* **236,1783 (1953).**

⁽⁴⁵⁾ E. K. Keler and A. **B.** Andreeva, *Ogneupory,* **22,65 (1957);** *0.* **M.** Maraulis and N. V. Gul'ko, *Dokl. Akad. Nauk SSSR,* **121,523 (1958).**

⁽⁴⁶⁾ B. Y. Sukharevskii, **I. I.** Vishnevskii, and **A. M.** Gavrish. *ibid.,* **140,884(1961).**

⁽⁴⁸⁾ B. C. Weber, H. J. Garrett, **F. A.** Mauer, and M. A. Schwartz, *ibid.,* **39,197 (1956).**

Table *111*

Lattice Parameters (A) for ZrO₂-CaO Solid Solutions

imum ionic conductivities determined in the investigations where conductivity was studied as a function of composition are italicized. Again, to facilitate comparison, results for the **15** % CaO composition are tabulated whenever possible.

Considering the difficulties associated with conductivity measurements which were discussed in section **I.B,** the agreement, especially among the more recent studies, **is** quite satisfactory. Relatively low sintering temperatures **of** only about 1500° may explain some of the low values, $2^{1,27}$ while no explanation can be offered for the inconsistently high value.⁵⁸ Examination of Table IV reveals a conductivity maximum of about 5.5 \times 10⁻² ohm⁻¹ cm⁻¹ at 1000° and 12-13% CaO, which coincides with the minimum amount of CaO necessary to stabilize $ZrO₂$.^{28, 30, 37, 54, 59, 62-65} Several authors have found a maximum within the fluorite field.^{27, 34, 57} The ionic conductivity for the 15% CaO composition is about 2.4 \times ohm-' cm-I at **1000".** Activation energies for the **12-13** and 15% CaO compositions are **25.2** and **29.0** kcal/mol. respectively.

In agreement with eq **2,** Arrhenius plots have been linear from **200** to 2000°, indicating that oxygen-ion vacancy migration is controlling the conductivity over this entire temperature range. Slope changes at 550 and *850'5'* may have resulted from

Ionic Conductivities (ohm⁻¹ cm⁻¹ \times **10**²) of ZrO₂-CaO Electrolytes at 1000[°]

*^a*Activation energies (kcal/mol) are in parentheses. When several compositions were studied, the maximum conductivity is italicized. **¹ 14.3** $\%$ CaO. \circ **12.5** $\%$ CaO. \circ Single crystals.

- (52) H. Binder, A. Koehling, H. Krupp, K. Richter, and G. Sandstede, Electrochim. Acta, 8,781 (1963).
- (53) T.Y. Tien, J. Appl. Phys., 35, 122(1964).
- (54) M. L. Ezerskii, N. I. Kozlova, V. S. Bagotskii, G. P. Kalliga, I. M. Demonis, L. N. Rastorguev, and V. I. Prilenskii, *Izu.* Akad. Nuuk *SSSR,* Neorg. *Muter.,2,1811(1966);Inorg.* Mater.,2,1561(1966). *(55)* T. H. Etsell, unpublished results.
-
- (56) I. Uyei, Y. Nakazawa, and T. Uetsuki, J. Ceram. Assoc. *Jup.,* **64,** 139 (1956).

(57) *2.* **S.** Volchenkova and **S.** F. Pal'guev, Tr. *Inst.* Elektrokhim., Akad. NaukSSSR, Urd. Filial, 2,173 (1961); Chem. Abstr., 59,8170(1963).

(58) A. Hoffmann and W. A. Fischer, *2.* Phys. Chem. (Frankfurt am Main), 35,95 (1962).

(59) A. Cocco and I. Barbariol, Uniu. Studi Trieste, Fac. Ing.. Ist. Chim., Appl.No. 15,14pp(1963); Chem. Abstr.,60,8704(1964).

- (60) R. W. Vest and N. M. Tallan, J. Appl. Phys., 36, 543 (1965).
- (61) G. Robert, J. Besson, and C. Deportes, Rev. Energ. Primaire, **2,** 5 (1966) (62) **I.** M. Demonis, G. P. Kalliga, A. A. Maier, M. L. Ezerskii, N. I.
- Kozlova, and E. I. Kolesnikova, *Vysokoogneupor. Mater.*, 110 (1966);
Kozlova, and E. I. Kolesnikova, *Vysokoogneupor. Mater.*, 110 (1966);
Chem. Abstr., 66, 98053 (1967).
- (63) J. W. Patterson, E: C. Bogren, and R. A. Rapp, *J.* Electrochem. SOC., 114,752 (1967).
- (64) H.-H. Moebius, Silikattechnik, 17,385 (1966).
- (65) A. Cocco and M. Danelon, Ann. Chim. (Rome), 55,1313 (1965).

⁽⁴⁹⁾ A. Hoffmann and W. A. Fischer, *2.* Phys. Chem. (Frankfurt am Main), 17,30(1958).

⁽⁵⁰⁾ W. D. Kingery, J. Pappis, M. E. Doty, and D. C. Hill, *J. Amer.*
Ceram. Soc., 42, 393 (1959).

⁽⁵¹⁾ A. D. Neuimin, S. F. Pal'guev, V. N. Strekalovskii, and G. V. Burov in :'Electrochemistry of Molten and Solid Electrolytes," Vol. 2, M. V. Smirnov, Ed., Consultants Bureau, New York, N. Y., 1964, p 66.

impurities or incompletely stabilized $ZrO₂$ since the oxides were directly mixed and fired at only **1550".** In samples containing **18** and **24x** CaO, higher slopes were found above 1000°.37 In the **24%** CaO sample, precipitation of **CaZrOa** would deplete the solid solution of CaO and shift the conductivities to higher values. However, this should not occur for the **18** % CaO composition. Other authors have observed slope changes at higher temperatures.^{29,58} The reason for this is not readily apparent.

I. Effect of Composition

The anion vacancy model for these solid solutions has been confirmed *via* density^{21,50} and X-ray intensity^{28,66} measurements. Both the cations and the anion vacancies are randomly distributed over the available sites.⁶⁶ In addition, Diness and Roy⁶⁷ found the major defect to be cation interstitials in samples quenched from 1800° at 1000°/sec.

Across the cubic phase region, the conductivity decreases despite the increasing number of anion vacancies. Both log *As9* and $\Delta H^{29,34,59}$ in eq 2 have been shown to increase linearly with the CaO content. Obviously, the oxygen ion mobility is decreasing markedly. Ionic mobility may be expressed as

$$
\mu = \frac{\nu a^2 e G}{RT} e^{-\Delta H/RT} \tag{3}
$$

where ν is the vibration frequency of the anions, a is the jump distance, and *G* includes the activation entropy and a geometric factor dependent on the lattice structure. **An** increase in ΔH would reduce the mobility. This increase could result from lattice distortion due to differences in the radii of the cations, 28, 54, 68 the presence of Ca²⁺ ion-anion vacancy complexes.^{69,70} or vacancy clustering.³⁴ Also, defect interactions or clustering will tend to reduce the number of available current carriers below the expected level. Vacancy orderingz7~ **28, 34,6517 1,** *⁷²*will reduce the anion mobility by decreasing G in eq 3.

Recently, Carter and Roth³⁴ found the maximum conductivity at **14x** CaO which resulted from the opposing effects of A and ΔH in eq 2. These authors introduced a "cluster" model and a "zone" model to represent the variation of conductivity with composition. In the former, the defects were assumed to interact and form clusters, and *A* varied as x^n where *x* is the mole fraction of CaO and *n* is a constant related to the activation entropy of the complex. The best agreement with the data resulted from a value of **7** for *n,* suggesting that ion transport involves a network or other multiplicative process. Their "zone" model had *A* varying as $e^{-m(x^2-x)^2}$ where *m* and *x'* are constants. Because of the similarity of this term to a Poisson distribution, they suggested an interpretation based on composition fluctuations in the disordered phase. Since *x'* equalled **0.226,** conduction may take place preferentially along paths with an average composition near this value. This model was

(68) A. Cocco and I. Barbariol, *Ric. Sci. Parr 2, Sez., A,* **296 (1962);** *Chem. Abstr.,* **58,7462(1963).**

supported by dielectric loss data, since loss peaks moved to lower frequencies after annealing the samples.

2. Eflect of Grain Boundaries

Tien⁵³ has demonstrated that specimens containing 16% CaO have higher conductivities and lower activation energies below 1000" after they are sintered at **1600"** compared to **2000".** Nevertheless, errors introduced by the presence of grain boundaries are insignificant relative to the lack of reproducibility indicated in Table IV. Grain boundaries only occupy a small volume fraction and, indeed, Carter and Roth³⁴ obtained identical results for single and polycrystalline specimens after correcting for a *3-6x* porosity in the latter. Of course, their high sintering temperature of **2000"** would result in large grain sizes and diminish the influence of grain boundaries. Grain growth⁷³ as well as sintering^{68,74} appear to be controlled by cation diffusion in these solid solutions.

G. ORDER-DISORDER TRANSFORMATION

A superstructure develops when $ZrO₂$ -CaO solid solutions are annealed for long times at temperatures around **1000°.19~28~34~64,65~76-77** The cations and anion vacancies become ordered and the lattice parameter increases to four times its original size.28 Ordering occurs more readily in single crystals^{31,76,78} and at high CaO concentrations.2~34~66~69~71~~7 It has a maximum rate at **1000°3478** and will not occur above **1250°34171*78** or below **650°.34**

Both dielectric³⁴ and mechanical⁶⁹ relaxation measurements have been used to study the ordering process. Dielectric loss peaks increased and moved to lower frequencies during annealing. Carter and Roth³⁴ suggested that the solid solutions contain zones of ordered oxygen polyhedra at all temperatures which grow by cation migration around **1000".** These zones are atomically coherent with no discontinuities or phase boundaries between them and may grow to **600 a** in size. Wachtman and Corwin⁶⁹ observed that internal friction peaks decreased during annealing and postulated that the oxygen vacancies exist in several states of binding. The more complex defect clusters would grow at the expense of the simpler ones during ordering. In both studies, the losses could be attributed to the migration of oxygen ions.

Ordering does not appreciably affect the activation energies for conduction, ^{28, 34, 65, 75} although ionic conductivities are markedly lowered. For example, during annealing at 1000°, decreases of **33,28** 30,66 and **50%'1** have been noted **in** samples containing from **18** to **20** % CaO. The resistivity has been observed to obey both a parabolic rate law^{34,78} and first-order kinetics;^{65,72} *i.e.*, it is proportional to $t^{1/2}$ and e^{-t} , where *t* is time, respectively. **As** already mentioned, ordering tends to reduce G in eq 3. Defect clusters through which oxygen ions may be extremely mobile will be removed.

Ordering can influence conductivity measurements as evidenced by slope changes in Arrhenius plots between **1000** and **1200"** for specimens containing between **16** and **20Z**

- **(76) H.-H. Moebius,** *Silikatfechnik,* **17,358 (1966).**
- **(77) T. Y. Tien,** *J.* **Amer.** *Ceram. SOC.,* **47,430(1964).**

⁽⁶⁶⁾ H. Schmaluied, *Z. Elekrrochem.,* **66,572 (1962).**

⁽⁶⁷⁾ A. M. Diness and R. Roy, *SolidState Commun.,* **3,123 (1965).**

⁽⁶⁹⁾ J. B. Wachtman, Jr., and W. C. Corwin, J. *Res.* **Nat.** *Bur. Stand.,* **69A, 457 (1965).**

⁽⁷⁰⁾ F. A. Kroeger, *J.* **Amer.** *Ceram. SOC.,* **49,215 (1966).**

⁽⁷¹⁾ J. E. Bauerle and J. Hrizo in "Transport Studies of Defect Structure
Inorganic Compounds," R. R. Heikes, Ed., U. S. Government Research
and Development Report, AD464733, 1965, p 14.

⁽⁷²⁾ T. Takahashi and Y. Suzuki, *Denki Kagaku,* **34,887 (1966).**

⁽⁷³⁾ T. Y. Tien and E. *C.* **Subbarao,** *J.* **Amer.** *Ceram.* **SOC., 46, 489 (1963). (74) W. H. Rhodes and R. E. Carter, ibid.,49,244(1966).**

⁽⁷⁵⁾ E. C. Subbarao and P. H. Sutter, J. *Phys. Chem. Solids, 25,* **148 (1964).**

⁽⁷⁸⁾ D. W. White, Reo. *Energ. Primaire,* **2,10(1966).**

CaO.^{28, 30,77} However, Carter and Roth³⁴ observed that some polycrystalline samples did not undergo any conductivity change or develop any additional diffraction peaks for annealing times of up to **3** months. Since cation diffusion, which controls the ordering transformation,3 *1.75* is quite slow (section **II.H),** slope changes would generally not be observed. Lastly, it should be noted that the long-term anneals used to study this transformation have not revealed the presence of either $ZrO₂$ or Ca $ZrO₃$, which offers further proof of the stability of the solid solutions discussed in section **1I.D.**

H. TRANSPORT NUMBERS FOR CATIONS

Since Wagner⁷⁹ gave the correct explanation for the transport mechanism in stabilized ZrO_2 , many attempts have been made to determine how close the anion transport number t_0 ²- is to 1.00. The radioactive tracers $95Zr$ and $45Ca$ and the stable isotope ¹⁸O have been used to determine diffusion coefficients in $ZrO₂$ -CaO solid solutions. The results of these investigations are summarized in Table V. The cation diffusion coefficients were extrapolated from higher temperatures for the purpose of comparison only. Such an extrapolation can distort the real situation at 1000° since diffusion along grain boundaries, free surfaces, and dislocations will have a greater influence at low temperatures.

Table V

Diffusion Coefficients in ZrO₂-CaO Solid Solutions

^{α} Taken from a graph; the equation gives values of 1.5 \times 10⁻⁷ cm²/sec and 28.1 kcal/mol. ^b Extrapolated from 1700°. *c* Extrapolated from **1550".**

Anion diffusion coefficients are at least five to six orders of magnitude greater than cation diffusion coefficients at 1000°. The entire electrical conductivity can be accounted for by using anion diffusion coefficients in the Nernst-Einstein equation.^{50,80} At higher temperatures, cation transport numbers will increase because of the high activation energies associated with cation migration. For instance, $t_{0²} = 0.99861$, $t_{z₁4+} =$ 0.00024, and $t_{Ca^{2+}} = 0.00115$ at 1800°.⁸¹ Volchenkova and Pal'guev **27** measured cation transport numbers by a gravimetric method using three oxide plates in series and obtained values ranging from 0.01 to 0.001 at 1000° for samples containing $10-40\%$ CaO. Finally, electrolysis at 1100° for 1875 hr at a current density of 21 mA/cm2 revealed no measurable resistance change or apparent deterioration of the electrodes of a $ZrO₂ + 15\%$ CaO electrolyte.⁸²

I. TRANSPORT NUMBERS FOR ELECTRONS

The high ionic transport number of $ZrO₂$ -CaO solid solutions is readily apparent upon electrolysis in argon.^{83, 84} The cathode becomes black and the electrolyte resistance decreases with time. Depending on the current density and temperature, either oxygen-deficient *ZrO₂* or zirconium forms at the cathode. Also, electrical conductivities have been shown to be independent of oxygen pressure from 1 to 10^{-22} atm at 870° , 85 from 1 to 10^{-10} atm at 1427 and 1627° ,⁵⁰ and from 1 to 10^{-12} atm at 1472°.86 However, as a means of detecting small electronic contributions, this method is quite insensitive. For example, Baker and West⁸⁷ defined the onset of n-type conduction with emf measurements, but could not detect it from conductivity measurements at similar oxygen pressures.

Permeabilities of ZrO₂-CaO electrolytes to oxygen have been determined by several researchers.⁸⁸⁻⁹⁰ At high oxygen pressures, the permeability varied as P_{0_2} ¹ and, from its time dependence, a diffusion coefficient for oxygen of 2.4×10^{-8} cm^2/sec at $1000°$ was calculated.⁸⁹ This value is lower than those shown in Table **V** since the permeation rate will be controlled by the species having the lower conductivity, in this instance electron holes. The oxygen pressure dependence is the expected one for the variation of the electron hole concentration.⁸⁵ These data⁸⁹ along with some conductivity data³⁷ have been analyzed by Heyne⁹¹ who determined the transport number for electron holes as 5×10^{-4} at 1275° and 3 \times atm of oxygen.

Polarization measurements at constant currents indicated that the ionic transport number is 1 from 100 to 1100° at 10^{-9} atm of oxygen.60 Using constant applied voltages, Patterson, Bogren, and Rapp⁶³ found that P_{θ} , the oxygen pressure where $\sigma_i = \sigma_n$ or $t_i = 0.50$, ⁶⁶ is 10^{-30.6} atm at 1000°. A value of **10-26.5** atm was determined by these authors from ac conductivity measurements using similar metal-metal oxide electrodes of Cu-Cu₂O, Ni-NiO, Cr-Cr₂O₃, Nb-NbO, and v-vo.

Most of the research dedicated to determining electronic transport numbers has involved emf measurements. For an oxygen pressure of 1 atm at the cathode and pressures of **0.2** and 10^{-17} atm at the anode, average electronic transport numbers of 0.002 and 0.006 , respectively, were calculated.⁸² *Also,* an electrolysis experiment indicated that the electronic contribution was less than 0.005 in oxygen for $ZrO₂ + 15\%$ CaO.⁸² Pure ionic conduction has been demonstrated at temperatures as low as 600° with oxygen concentration cells.^{34,92-94}

- **(85)** K. Kiukkola and C. Wagner, *J. Electrochem.* **Soc., 104,379 (1957).**
- **(86)** R. E. Carter, *J. Amer. Ceram.* Soc., **43,448 (1960).**

(92) S. F. Pal'guev and **A.** D. Neuimin in ref **27,** p **90.**

⁽⁷⁹⁾ C. Wagner, *Naturwissenschaften,* **31,265 (1943).**

⁽⁸⁰⁾ L. A. Simpson and R. E. Carter, *J. Amer. Ceram.* Soc., **49, 139 (1966).**

⁽⁸¹⁾ H.-H. Moebius, H. Witzmann, and D. Gerlach, *2. Chem.,* **4, 154** (**1964).**

⁽⁸²⁾ J. Weissbart and R. Ruka, *J. Elecfrochem. SOC.,* **108, 167c (1961);** Electrochemical Society Fall Meeting, Detroit, Mich., **1961,** Extended Abstract No. **44,** Battery Division.

⁽⁸³⁾ G. Beranger, P. Desmarescaux, and P. Lacombe, C. *R. Acad. Sci., Paris,* **259, 1961 (1964);** G. Beranger and P. Lacombe, *Reo. Huutes Temp. Refract.,* **3,235 (1966).**

⁽⁸⁴⁾ M. Jacquin, M. Guillou, and J. Millet, C. *R. Acad. Sci., Paris,* **264, 2101 (1967).**

⁽⁸⁷⁾ R. Baker and J. M. West, *J. Iron Steel Inst., London,* **204, 212 (1966).**

⁽⁸⁸⁾ *Y.* M. Ovchinnikov, **S. V.** Karpachev, A. D. Neuimin, and **S.** F. Pal'guev, *Ogneupory,* **30,40 (1965).**

⁽⁸⁹⁾ A. W. Smith, F. W. Meszaros, and C. D. Amata, *J. Amer. Ceram. SOC.,* **49,240 (1966).**

⁽⁹⁰⁾ H. Ullmann, *2. Phys. Chem.* (Leipzig), **237,71(1968).**

⁽⁹¹⁾ L. Heyne in "Mass Transport in Oxides," J. B. Wachtman, Jr., and A. D. Franklin, Ed., National Bureau of Standards Special Publication 296, U. S. Government Printing Office, Washington, D. C., 1968, p
149.
149.

⁽⁹³⁾ H. Ullmann, *2. Chem.,* **7,65 (1967).**

⁽⁹⁴⁾ T. **H.** Etsell and **S.** N. Flengas, to be published.

Deviations from theoretical emf values below 600° ⁹³ may have arisen owing to impurities in the electrolyte leading to extrinsic electronic conduction. Alternately, in the case of **Pt** electrodes, the formation of Pt oxides below 500° might interfere.⁹⁵ Deviations above 1150 $^{\circ}$ of a cell having Ni-NiO and Fe-Fe_zO electrodes undoubtedly resulted from mixed potentials introduced by the argon atmosphere rather than electronic conductivity in the electrolyte.⁶¹

Emf measurements have also been used to establish the range of oxygen pressures where exclusively ionic conduction occurs. In 1933, Wagner⁹⁶ derived the relationship

$$
E = \frac{RT}{4F} \int_{\ln P_{0_2}}^{\ln P_{0_2}} t_1 \, \mathrm{d} \ln P_{0_2} \tag{4}
$$

where t_i is the ionic transport number and P_{0_i} " and P_{0_i} " are the oxygen pressures at the cathode and anode, respectively. Assuming that only ionic and n-type conductivity are present, then

$$
t_{i} = \frac{1}{1 + (P_{\Theta}/P_{\text{O}_2})^{1/4}} \tag{5}
$$

providing that $\sigma_n \propto P_{Q_2}^{-1/4}$ ⁸⁵ which implies that the mobility of the electrons is unaffected by their concentration. As mentioned previously, P_{θ} is the oxygen pressure where $t_i =$ 0.50. Substituting eq *5* into eq 4 and applying the condition that P_{0_2} ' $\ll P_{\Theta}$ yield the result

$$
PO = P_{0i}^{\prime\prime}e^{-4EF/RT} \tag{6}
$$

This relationship was first derived by Schmalzried.⁶⁶ Consequently, the parameter P_{θ} may be determined by imposing an oxygen pressure at the anode which is at least two or three orders of magnitude lower than P_{θ} . This was established by Schmalzried⁶⁶ with a Ca-CaO mixture. From eq 6, he found that $t_i = 0.50$ at an oxygen pressure of 10^{-24} atm and 1000° and, from eq 5, that $t_i = 0.98$ at 10^{-18} atm and 1000° . At *80O0, ti* became 0.50 at 10-31atm. A low oxygen pressure could also be achieved by coulometrically titrating oxygen out of the anode chamber. In this manner, values for P_{Θ} of 10^{-28} atm⁹⁷ and 10^{-23} atm⁹⁸ at 1000° have been determined. For all these studies, air was used as the reference electrode. In one case,⁶⁶ Ni-NiO was also used.

By comparing emf's for the cell NbO₂, Nb₂O_{5-x} ZrO₂- $CaO[Fe, Fe_zO$ with those measured for a similar cell with Thoz-based electrolytes having ionic transport numbers of 1, Steele and Alcock⁹⁹ calculated a value of 10^{-23} atm for P_{Θ} at 1000°. Finally, Baker and West⁸⁷ established the onset of electronic conduction at 10^{-18} atm of oxygen at 1000° using H_z -H₂O electrodes. No definite transport number could be associated with this oxygen pressure.

All the aforementioned data are compared in Table **VI.** The discrepancies may, in part, be due to different electrolyte purities. Easily reduced impurity ions will aid the onset of ntype conductivity.^{60,70} Also, emf measurements are subject to errors arising from polarization (section 1.C). Both these effects produce misleadingly high electronic transport numbers. Consequently, the lower values in Table VI are to be preferred.

(98) *D.* Yuan and F. A. Kroeger,J. *Electrochem.* **SOC., 116,594(1969).**

Critical Oxygen Pressures for Zr02-CaO Electrolytes at 1000

a Calculated from eq *5. b* From ac conductivity measurements. *⁰*From polarization measurements.

Thermodynamic investigations of stable oxide systems which have imposed low oxygen potentials on $ZrO₂$ -CaO electrolytes have indirectly helped to establish the width of the oxygen pressure region in which the ionic transport number is approximately 1. The equilibrium oxygen pressures for some of these systems are listed in Table VII. Initially, Kiukkola and

Table VII **Thermodynamic Data for Some Stable Metal Oxides at 1OOO"**

System	ΔG_f° , kcal/mol of O_2^{100}	$Log P_{0},$
$Fe-FezO$	-86.0	-14.8
$Mo-MoO2$	-87.7	-15.0
$W-WO2$	-91.9	-15.8
$Cr-Cr2O3$	-125.8	-21.6
$Mn-MnO$	-139.6	-24.0
$Ta-Ta_2O_5$	-143.4	-24.6
$Nb-NbO$	-146.4	-25.1

Wagner⁸⁵ demonstrated that these electrolytes could be used in contact with Fe-Fe_xO electrodes to obtain accurate thermodynamic data. Results obtained with $Mo-MoO₂$ ¹⁰⁴¹⁰² and $W-WO₂$ ¹⁰²⁻¹⁰⁵ electrodes were in satisfactory agreement with those from gas equilibrium measurements. In addition, successful studies with $TaS_2-Ta_2O_5$ (-16.4), ¹⁰⁶ Nb₂O₄-Nb₂O_{5-x} (-16.9) , 107 W-CaWO₄-CaO (-17.8), ¹⁰⁸ Zn-ZnO (-17.9), ¹⁰⁹ $UO_{2.00000}$ (-18.0),¹¹⁰ and TiO_{1.992} (-18.1)¹¹¹ electrodes have been reported. The numbers in parentheses are the logarithms of the equilibrium oxygen pressures at 1000° . In one case, 10° the data were extrapolated above 908°. Finally, although the cell Cr, Cr_2O_3 ZrO_2 -CaO air gave values for \overline{t}_1 (eq 1) of only

(100) 0. Kubaschewski, E. L1. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," **4th** ed, Pergamon Press, London, **1967.**

(101) R. A. Rapp, *Trans. Met. SOC. AZME,* **227,371 (1963).**

(102) G. B. Barbi,J. *Phys. Chem.,* **68,1025 (1964).**

- (103) Y. I. Gerasimov, I. A. Vasil'eva, T. P. Chusova, V. A. Geiderikh, and M. A. Timofeeva, Zh. Fiz. Khim., 36, 358 (1962); Russ. J. Phys. Chem., 36, 180 (1962); Dokl. Akad. Nauk SSSR, 134, 1350 (1960).
-
- **(104) F. E.** Rizzo, **L.** R. Bidwell, and D. F. Frank, *Trans. Met.* **Soc,** *AZME,* **239.1901 (1967).**
- (105) K. Kashida; K. Goto, and M. Someno, *ibid.,* **242,82 (1968).**
- (106) H. R. Larson and J. F. Elliott, *ibid.*, 239, 1713 (1967).

(110) T. L. Markin, R. J. Bones, and V. **J.** Wheeler, *Proc. Brit. Cerum.*

⁽⁹⁵⁾ R. Hartung and **H.-H.** Moebius, *2. Chem.,* **9,197(1969).**

⁽⁹⁶⁾ C. Wagner, *Z.Phys. Chem.,* **B21,25 (1933).**

⁽⁹⁷⁾ Y. D. Tretyakov, *Izv. Akad. Nauk SSSR, Neorg. Mater.*, 2, 501 *(1966); Inorg. Mater.,* 2, 501

⁽⁹⁹⁾ B. C. **H.** Steele and C. B. Alcock, *Trans. Met. Soc. AZME,* **233,1359 (1965).**

⁽¹⁰⁷j R. **N.** Blumenthal, **J.** B. Moser, and **D.** H. Whitmore, *J. Amer. Ceram.* **Soc.,48,617(1965).**

⁽¹⁰⁸⁾ T. N. Rezukhina, V. **I.** Lavrent'ev, **V.** A. Levitskii, and **F. A.** Kuznetsov, *Zh. Fir. Khim.,* **35, 1367 (1961);** *Russ. J. Phys. Chem.,* **35, 671 (1961).**

⁽¹⁰⁹⁾ T. C. Wilder, *Trans. Met.* **SOC.** *AIME,* **245,1370 (1969).**

Soc.,8,51 (1967). (1 11) R. **N.** Blumenthal and D. H. Whitmore, *J. Electrochem.* **Soc., 110, 92 (1963).**

0.97 at 1100° and 0.96 at 1200° , 112 excellent agreement with published values¹⁰⁰ for ΔG_f° of Cr_2O_3 has been obtained with galvanic cells incorporating $ZrO₂$ -CaO electrolytes.^{97, 113}

Successful measurements at lower oxygen potentials have not been reported although a Mn-MnO electrode behaved adequately below 800°.⁹⁷ Electronic conductivity has been apparent when $ZrO₂$ -CaO electrolytes contacted Mn-MnO¹¹⁴ and Nb-NbO¹¹⁵ electrodes, and undoubtedly influenced the results of studies involving $Ta-Ta_2O_{5}$ ¹¹⁶ Nb-NbO,¹¹⁷ Ti-TiO,¹¹⁷ and V_2O-VO ¹¹⁸ electrodes.

Quite recently, Vecher and Vecher¹¹⁹ have indicated the importance of recognizing the difference between t_i (eq 5) and t_i (eq 1). From Tretyakov's paper,⁹⁷ they calculated that

$$
\log P_{\Theta} = -\frac{60.5 \times 10^3}{T} + 19.5 \tag{7}
$$

from 900 to 1500°K. However, even if $t_i = 0.50$ at one electrode, **ti** will be about 0.96 and 0.91 for reference electrodes of O_2 and Fe-Fe_xO, respectively. For emf's to be accurate within 1 %, *i.e.*, $\bar{t}_i \geq 0.99$, it is only necessary that t_i at the anode be \geq 0.9 for an air or oxygen reference electode. This requirement will be satisfied if

$$
\log P_{0_2}{}' \geqslant -\frac{60.5 \times 10^3}{T} + 23.5 \tag{8}
$$

where P_{0} ['] is the oxygen pressure at the anode.¹¹⁹⁻¹²¹ Consequently, ZrO₂-CaO electrolytes should be useful to oxygen pressures four orders of magnitude lower than those listed in column 1 of Table VI. This means that accurate thermodynamic data should be obtainable for Cr_2O_3 to 1200° and MnO to $1000-1050^{\circ}$ 119 in close agreement with aforementioned emf studies.^{97, 113} The data for MnO above 800 $^{\circ}$ 97 could be corrected to account for the electronic conduction. 119

In summary, the cells $P_{0_2}' = 10^{-24} |ZrO_2-CaO|$ air and $P_{0i}' = 10^{-20} |ZrO_2-CaO|$ air have average ionic transport numbers of 0.99 and 0.999 at 1000°, respectively. The accuracies obtainable from such cells will be solely limited by the experimental techniques.

Little has been said thus far concerning temperatures around 1600[°]—an important consideration since one of the most significant industrial applications of solid oxide electrolytes is their use as oxygen probes for monitoring the content of dissolved oxygen in liquid steel. Although insignificant p-type conductivity occurs at oxygen pressure of 1 atm and 1600° , ⁵⁰, ⁶¹ n-type conductivity has been detected below $10^{-8}-10^{-9}$ atm⁸⁷ and 10^{-10} - 10^{-11} atm¹²² at this temperature. The latter pressure is equivalent to about 200 ppm by weight of oxygen in steel.

121) *Y.* D. Tretyakov, *Vestn. Mosk. Unio., Ser.11,* in press.

With the cell H_2 , $H_2O|ZrO_2$ -CaO air, electronic conductivity could be detected at $10^{-9.5}$ atm.¹²³ Equations 1 and 5 were used to show that $\bar{t}_i = 0.99$ and 0.50 at oxygen pressures of and 10^{-13} atm at 1600° , respectively. A similar cell having $CO-CO₂$ mixtures at the anode was used to demonstrate that $\bar{t}_1 = 0.98$ at 10^{-8} atm.¹²⁴ Measurements like these are especially sensitive to gas leakage and porosity in the electrolytes. Other investigators have demonstrated that ZrO_z CaO electrolytes are useful to somewhat lower oxygen pressures. Electrodes of Fe-Si-SiO₂, 114 Fe-O, 125 Fe-Ti-TiO₂, 126 and $Cr-Cr_2O_3^{127}$ have all been used to show that electronic conductivity is essentially absent at an oxygen pressure of 10^{-12} atm and 1600", **Le.,** about 25 ppm of oxygen in steel. Reliable results were recently claimed down to 3×10^{-13} atm, *i.e.*, about 10 ppm of oxygen in steel.¹²⁸ Still lower oxygen contents might be realized if readings could be taken within $5-10$ sec.¹²⁸ The Cr-Cr₂O₃ reference electrode used in this latter investigation will reduce the driving force for the open-circuit transfer of **02-** ions across the electrolyte.

J. CONCLUDING REMARKS

Several ternary systems involving $ZrO₂$ and CaO have been studied. For example, the third components have been $MgO₁₂₉$ NiO,⁵¹ TiO₂,¹³³ and Ta.¹³⁴ Additions of both MgO¹²⁹ and $Y_2O_3^{30}$ increased the conductivity, possibly owing to reduced lattice distortion in the case of MgO because of the relatively small Mg^{2+} ions (Table I) and weaker defect interactions in the case of Y_2O_3 . In a Zr⁴⁺ sublattice, Y^{3+} and Ca²⁺ ions will have effective charges of -1 and -2 , respectively. Consequently, Y^{3+} ions would be expected to interact less strongly with anion vacancies having effective charges of $+2$ than Ca^{2+} ions. Indeed, $ZrO₂-Y₂O₃$ electrolytes have higher conductivities than those formed from the $ZrO₂-CaO-Y₂O₃$ ternary system.³⁰ For the ZrO₂-CaO-MgO system, a ZrO₂ + 9% CaO + 4% MgO sample had a conductivity of 7.4 \times 10^{-2} ohm⁻¹ cm⁻¹ at 1000° .¹²⁹ Unfortunately, attempts to increase the MgO content were futile on account of the instability of $ZrO₂$ -MgO solid solutions. Higher CaO + MgO contents permitted a greater portion of MgO to be added, but lower conductivities resulted. The addition of SrO destabilizes $ZrO₂-CaO$ solid solutions.¹³⁰ The latter can dissolve large amounts of some transition metal oxides, for instance, 12.5% Fe,O at 1450°.132 Generally, the presence of transition metal ions imparts electronic conductivity to the electrolytes. The addition of 0.8 wt $\%$ V, 0.1 wt $\%$ Fe, and 0.01 wt $\%$ Cr caused *50%* electronic conduction at only **10-'6** atm of oxygen and SO^{130} Y_2O_3 ³⁰ La_2O_3 , 25, 181 Fe_2O , 49, 58, 182 Fe_2O_3 , 49, 51, 58, 182

- **(123)** W.A. Fischer andD. Janke, *ibid.,* **39,89 (1968).**
- **(124)** J.K. Pargeter,J. *Metals,20(10),* **27(1968).**
- **(125) C.** Gatellier and M. Olette, C. *R. Acad. Sci., Paris,* **266, 1133 (1968).**
- **(126)** C. Gatellier, K. Torssell, and M. Olette, *ibid.,* **266,1753 (1968).**
- **(127)** R. **J.** Fruehan, *Trans. Met. SOC. AIME,* **242,2007 (1968).**

(129) S. F. Pal'guev, A. D. Neuimin, and V. N. Strekalovskii in "Electrochemistry of Molten and Solid Electrolytes," Vol. 6, A. N. Barabo-shkin, Ed., Consultants Bureau, New York, N. Y., 1968, p 121.

(130) R. A. Tarnopol'skaya, N. V. Gul'ko, and **A.** M. Gavrish, Dokl. *Akad. Nauk SSSR,* **180,1176(1968).**

- **(132)** W. A. Fischer and **A.** Hoffmann, *Arch. Eisenhuettenw.,* **28. 771** (**1957).**
- **(133)** A. Cocco and M. Danelon, *Ann. Chim.* (Rome), **55,1330(1965).**
- **(134) A.** G. Buyers,J. *Arner. Ceram.* **Soc.,48, 122(1965).**

⁽¹¹²⁾ W. Pluschkell and H.-J. Engell, *2. Metallk.,* **56,450(1965).**

⁽¹ **13)** *Y.* D. Tretyakov and H. Schmalzried, *Ber. Bunsenges. Physik. Chern.,* **69,396(1965).**

⁽¹¹⁴⁾ K. Schwerdtfeger,Trans. *Met. SOC. AIME,* **239,1276(1967).**

⁽¹¹⁵⁾ *C.* B.Alcock and B. *C.* **H.** Steele, *Sci. Ceram.,* **2,397(1965).**

^{(116) (}a) Y. Matsushita and K. Goto, J. Fac. Eng. Tokyo Univ., 27, 217 (1964); (b) in "Thermodynamics," Vol. I, International Atomic Energy Agency, Vienna, 1966, p 111.

⁽¹¹⁷⁾ M. Hoch, A. **S.** Iyer, and *J.* Nelken, *J. Phys. Chern. Solids,* **23, 1463 (1962).**

⁽¹¹⁸⁾ M. Hoch and D. Ramakrishnan, *ibid.,* **25,869 (1964).**

⁽¹¹⁹⁾ A. A. Vecher and D. V. Vecher, *Zh. Fiz. Khim.,* **41, 1288 (1967);** *Rum. J. Phys. Chern.,* **41, 685 (1967).**

⁽¹²⁰⁾ *Y.* D. Tretyakov and A. Muan, *J. Electrochem. Soc.,* **116, 331** (**1969).**

⁽¹²²⁾ W. A. Fischer and **W.** Ackermann, *Arch Eisenhuettenw.,* **36, 643,** *695* **(1965).**

⁽¹²⁸⁾ R. **J.** Fruehan, L. **J.** Martonik, and E. T. Turkdogan, *ibid., 245,* **1501 (1969).**

⁽¹³¹⁾ N. Schromek, *Ann. Chim.* (Rome), **53,1560(1963).**

1000°.⁶⁰ Kroeger⁷⁰ accounted for this result by postulating that calcium, which is an acceptor, exists in a neutral form owing to pairing or clustering of $Ca²⁺$ ions and anion vacancies. Thus, the donor properties of the impurity ions will be able to control the electrical behavior of the solid solutions.

The high oxygen ion mobility in $ZrO₂$ -CaO solid solutions has rendered them very suitable solid electrolytes. Moebius¹³⁵ invoked geometric considerations of the fluorite structure to explain this mobility, The gaps between the cations through which the anions must migrate are 90% as large as the anions themselves because of the small radii of the Zr^{4+} ions. By comparison, the cations must move through gaps only 56% of their size.

Earlier reviews of the electrical behavior of $ZrO₂-CaO$ electrolytes have been written by Subbarao¹³⁶ and Moebius.^{64,76}

111. Other Zr0,-Based EIectroIytes

$A. ZrO₂-Y₂O₃$

As early as 1899, Nernst¹³⁷ observed ionic conductivity in $ZrO₂ + 9\% Y₂O₃$. In 1937, Baur and Preis¹⁸⁸ constructed the first solid oxide-electrolyte fuel cell using this material which has recently been thoroughly discussed by Moebius.¹⁸⁹ Hund¹⁴⁰ found the fluorite phase to extend from 5 to 46% Y₂O₃ at 1300". Density measurements verified the correctness of the oxygen vacancy model proposed by Wagner⁷⁹ for these solid solutions. Duwez, Brown, and Odell¹⁴¹ fixed the limits at 7 and *55* % YzOa at 2000", and 7 and *50%* YzOa at 1000". Phase boundaries of 9 and 55% Y₂O₃ at 1500°,¹⁴² 7 and 53% Y₂O₃ at 2000°,¹⁴³ and 9 and 45-50 $\%$ Y₂O₃ at 1800°³⁰ have also been determined. Lower limits of 7% at 2000" **l4** 8% at 1750°,144 and 8% at 1OOO" **14** have also been indicated. These data convincingly place the minimum amount of Y_2O_3 needed to fully stabilize $ZrO₂$ at 7-8%. In addition, complete stabilization with only 6% Y₂O₃ was achieved at 850°.¹⁶ The tetragonalcubic transformation of $ZrO₂$ upon adding $Y₂O₃$ occurs without the appearance of a two-phase field above 1700°.14

Other lower limits have been suggested as 15% at 1750°,¹⁴⁸ >10% at 1700°,¹⁴⁵ >7% at 840°,¹⁴⁶ and 9% at 1800-2000°.¹⁴⁷ Again, failures to obtain equilibrium are producing these discrepancies. The similarity between the fluorite structure and the cubic, C-type rare earth oxide structure of Y_2O_8 partly accounts for the high solubility of Y_2O_8 in cubic $ZrO₂$.

(135) H.-H. Moebius,Z. *Chem., 2,100(1962).*

- *(136)* E. C. Subbarao in "Non-stoichiometric Compounds," L. Mandel-
- corn, Ed., Academic Press, New York, N. *Y., 1964,* p *268.*
- *(137)* W. Nernst,Z. *Elektrochem., 6,41(1899).*
- *(138)* E. Baur and H. Preis, *ibid., 43,727 (1937).*
- *(139)* H.-H. Moebius, *Naturwissenschaften, 52,529 (1965).*
- *(140)* F. Hund, *Z. Elektrochem., 55,363 (1951).*
- *(141)* P. Duwez, *F.* H. Brown, and F. Odell, *J. Electrochem. SOC., 98, 356(1951).*
- *(142)* C. Schusterius and **N.** N. Padurow, *Ber. Deut. Keram. Ges., 30, 235 (19531.*
- *(143;* F.-K. Fan, A. K. Kuznetsov, and E. K. Keler, *Zzv. Akad. Nauk SSSR, Otd. Khim. Nauk, 601 (1963); Chem Abstr., 59,5842(1963).*
- *(144)* M. L. Ezerskii, **I. I.** Kozlova, R. *Y.* Popil'skii, and **I.** M. Demonis, *Izv. Akad. Nauk SSSR, Neorg. Mater.,* **4,** *1599 (1968); Inorg. Mater., 4, 1395 (19681.*
- *(145)'E.* K: Keler and A. B. Andreeva, *Ogneupory, 28,224(1963).*
-
- (146) V. N. Strekalovskii, A. F. Bessonov, V. M. Ust'yantsev, and G. V.
Burov in "Electrochemistry of Molten and Solid Electrolytes," Vol. 3, A. N. Baraboshkin, Ed., Consultants Bureau, New York, N. Y., 1966, p 111.
- **(147)** D. **W.** Strickler and **W.** G. Carlson, *J. Amer. Ceram. SOC., 48,286 (1965).*

Although the pyrochlore-type compound $Y_2Zr_2O_7$ has been identified, ^{143, 148} its existence has recently been denied. ^{149, 150} The similarities between the fluorite and pyrochlore structures and the scattering powers of the Zr^{4+} and Y^{3+} ions might explain this. In a binary oxide system, compounds will normally not form for cation field-strength differences less than 0.3 **¹⁵¹** (section **I.A).** This difference is 0.29 in the $ZrO₂-Y₂O₃$ system based on Moebius' radii'listed in Table **I.**

For $ZrO_2 + 10\% Y_2O_3$ solid solutions, lattice parameters of 5.127,¹⁴⁰ 5.132,¹⁴¹ 5.140,¹⁵² 5.141,³⁶ 5.143,¹⁵³ and 5.145 \AA ^{14, 80, 147} have been given. The electrical conductivity results for this system are summarized in Table **VI11** in a similar manner to that for the ZrO₂-CaO system in Table IV. The agreement among the maximum conductivities obtainable from these electrolytes is remarkable.

Table VIIl

Ionic Conductivities (ohm⁻¹ cm⁻¹ \times **10**²) of ZrO₂-Y₂O₃ Electrolytes **at lOOO"4**

8		Composition, $\frac{9}{2}$ Y_2O_3 ю	15	Ref
13(18.5)		7.7(19.8)	3.6(24.7)	37
		4.8	4.8	154
3.6			1.5	155
	10(18.2)	10(20.0)	3.1(27.7)	30
10(17.0)		12(20, 0)		147
		5.8		156
		10		157
7.0		8.7		144
		12(17.7) ^b	2.9(23,7)	158
		12		153

*⁰*Activation energies (kcal/mol) are in parentheses. When several compositions were studied, the maximum conductivity **is** italicized. *b* 12% Y₂O₃.

Analogous to the $ZrO₂$ -CaO system, the highest conductivities occur at compositions near the lower limit of the singlephase region. Although the addition of 12% CaO to ZrO₂ produces 6% anion vacancies compared to only 4.1% upon the addition of 9% Y₂O₃ to ZrO₂, the latter electrolyte is twice as conductive at 1000°. Weaker defect interactions, as mentioned in section IIJ, may be the main reason for the markedly higher anion mobilities in the $ZrO₂-Y₂O₃$ solid solutions. The $ZrO_2 + 12\%$ CaO and $ZrO_2 + 9\%$ Y₂O₃ electrolytes have activation energies of 25 and 18 kcal/mol, respectively.

Linear Arrhenius plots (eq 2) over wide temperature ranges usually indicate the presence of only one mode of conduction, excluding the possibility that two competing modes have

- *(150)* D. K. Smith, *J. Amer. Ceram. SOC., 49,625 (1966).*
- *(151)* K. *S.* Vorres, *ibid.,46,410(1963).*
- *(152)* D. *T.* Bray and U. Merten, *J. Electrochem. SOC., 111,447 (1964).*
- *(153)* **3.** E. Bauerle and J. Hrizo, *J. Phys. Chem. Solids, 30,565 (1969).*
- *(154)* A. D. Neuimin and **S.** F. Pal'guev, *Tr. Inst. Elektrokhim., Akad. Nauk SSSR, Ural. Filial, 5,145 (1964); Chem. Abstr., 62,8472 (1965).*
-
- *(155)* H.-H. Moebius, H. Witzmann, and G. Proeve, *2. Chem., 4, 195 (1 964).*
-
- *(156)* A.-M. Anthony, *C. R. Acad. Sci.,Paris, 260,1936(1965). (157)* J.-P. Loup, *Z.* Mihailovic, and P. Morvan, *ibid., 261,109 (1965).*
- *(158)* R.E. W.Casseltoninref *34,p 151.*

⁽¹⁴⁸⁾ F.-K. Fan, A. K. Kuznetsov, and E. K. Keler, *Izv. Akad. Nauk SSSR, Ord. Khim. Nauk, 1141 (1962); Chem. Abstr., 58,2889 (1963).*

⁽¹⁴⁹⁾ T.-H. Lin and H.-C. **Yu,** *Kuei Suan Yen Hseuh Pao, 4,22 (1965); Chem. Abstr.,63,9106(1965).*

similar activation energies. For the $ZrO₂-Y₂O₃$ electrolytes, linear plots have been indicated between 550 and 1200°,³⁷ 700 and 1400°,30 700 and 1000°,144 and 600 and 2100°.156 The conductivities are not influenced by oxygen pressure.^{156, 157} Based on this information, it is difficult to reconcile Casselton's data.¹⁵⁸ For samples containing 12, 15, and 20% Y₂O₃, he found slope changes at 820 and 1200° and higher conductivities in oxygen than in argon $(P_{0_2} = 10^{-10} \text{ atm})$ above 820^o. Other authors^{37, 154, 155} have indicated that the conductivities of compositions lying near the low-yttria cubic phase boundary deviated to progressively lower values above 800" than would be expected by extrapolation of low-temperature Arrhenius plots. Precipitation of a tetragonal **ZrOz** solid solution would enrich the cubic phase in Y_2O_3 , thereby lowering the conductivity (Table VIII). An increasing slope with increasing temperature for a $ZrO_2 + 43\frac{m}{6}Y_2O_3$ specimen¹⁵⁵ is consistent with the precipitation of a Y_2O_3 -rich solid solution. Recently, Bauerle and Hrizo¹⁵³ reported that the resistivity divided by the absolute temperature for $ZrO₂ + 10\% Y₂O₃$ was described by the sum of two terms having the form of the right side of eq 2. Assuming a vacancy trapping mechanism, values of the activation enthalpy for free vacancy motion and the trapping enthalpy of an oxygen vacancy by a Y^{3+} ion were 15.7 and 11.2 kcal/mol, respectively.

Heat treatments for extended times at $800-1500°$ $44,141,159$ have not resulted in the decomposition of the solid solutions. Evidently, the eutectoid temperature is below that at which decomposition could proceed at a noticeable rate. An orderdisorder transformation has been observed in samples containing 20 and 25% Y₂O₃ at about 1100^o after they were annealed for 2 weeks at *900°.30* The authors suggested that the degree of ordering would increase with the Y_2O_3 content and attain a maximum near 33% Y_2O_3 , although the compound $Y_2Zr_2O_7$ was not detected.

Transport numbers in yttria-stabilized zirconia will now be briefly considered. Blackening of the ceramic samples, starting at the cathode and extending further toward the anode with time, has resulted from the electrolysis of $ZrO₂-Y₂O₃$ electrolytes.156-158~160 Nonstoichiometric black zirconia or zirconium metal may form at the cathode owing to a depletion of oxygen or, alternately, anion vacancies may trap electrons ejected from the cathode forming color centers.158 Using an oxygen concentration cell, Neuimin and Pal'guev154 measured ionic transport numbers of about 0.992 at an oxygen pressure of 1 atm and 650-1100° for $ZrO₂ + 15\% Y₂O₃$, while Bray and Merten's data¹⁵² indicated that electronic transport numbers were no greater than 0.005 and 0.011 in oxidizing and reducing atmospheres, respectively, from 800 to 1100 $^{\circ}$ for $ZrO_2 + 10\%$ Y_2O_3 . The reducing atmosphere was imposed by hydrogen, saturated with water vapor at room temperature. From these results, Bray and Merten¹⁵² estimated that $P_{\theta} \leq 10^{-25}$ atm at 1100". Using hydrogen at one electrode and eq 6, they calculated values for P_θ of 10^{-27} and 10^{-31} atm at 1000° , but could not determine which was more accurate. *Also,* they estimated that the transport number of Y^{3+} ions, relative to Zr^{4+} ions, was no greater than 4×10^{-9} . Because of their greater charge, less interference from Y³⁺ ions compared to Ca²⁺ ions might be expected in ZrO₂-based electrolytes. From dc polarization measurements, Strickler and Carlson³⁰ concluded that the

anion transport number in $ZrO_2 + 9\% Y_2O_3$ is greater than 0.99. Higher conductivities observed at high dc currents were attributed to the reduction of Zr^{4+} to Zr^{3+} ions.

From the preceding discussion, it is evident that the behavior of $ZrO₂-Y₂O₃$ electrolytes parallels very closely that of $ZrO₂$ -CaO electrolytes, indicating that the major component controls their properties to a great extent. Therefore, it is difficult to explain the results of Casselton¹⁵⁸ and Casselton and Scott¹⁶¹ who found the conductivities of $ZrO_x-Y₂O₃$ specimens to increase with increasing oxygen pressure from 6×10^{-4} to 1 atm at 1380°, indicative of p-type conductivity arising from a dissolution of excess oxygen into the lattice according to

$$
^{1}/_{2}O_{2}(g) + V_{0}^{*} = O_{0} + 2h^{*}
$$
 (9)

where V_3 is a doubly ionized oxygen vacancy, O_0 is an oxygen ion on a normal lattice site, and h' is an electron hole. The ptype conductivity obeyed the predicted $P_{Q_2}^{1/4}$ law.⁸⁵ Since these authors passed dc currents, a depletion of **02-** ions in the vicinity of the cathode would drive eq 9 to the right. However, higher ac conductivities were found at 1 atm than 10^{-10} atm of oxygen above only 820[°].¹⁵⁸ The measuring frequency of 5000 cps would appear to rule out polarization phenomena.

B. ZrO₂-La₂O₃

Early studies of this system had shown that cubic fluorite solid solutions exist between 10 and 35% La₂O₃ after melting,¹⁶² 25 and 42% La₂O₃ at 2000°,¹⁶³ and 30 and 40% La₂O₃ at 1000°.163 However, more recent evidence has shown that the La³⁺ ion is too large (1.21 Å) to form fluorite solid solutions. ¹⁶⁴ Instead, solid solutions based on the compound $\text{La}_2\text{Zr}_2\text{O}_7$, which has the cubic pyrochlore structure, form in this system.¹⁶⁴ This structure has an ordered array of anion vacancies. Trombe and Foëx¹⁶² did find maximum order at 33% La₂O₃. The work of Perez y Jorba, Collongues, and Lefevre¹⁶⁵⁻¹⁶⁸ has verified the existence of this compound. It melts congruently at 2180° ¹⁶⁵ and has a range of homogeneity extending from 33.3 to 39% La₂O₃ below 1500° and from 25 to 40% Laz03 near its melting point. **166-168** Strickler and Carlson147 detected only typical pyrochlore structures in samples containing between 6 and 24% La₂O₃ fired at 1800–2000°. The cubic fluorite phase is stable only above 1800°¹⁶⁸ and extends from 6 to 16% La₂O₃ near liquidus temperatures.¹⁶⁶⁻¹⁶⁸ It could be prepared metastably at only 800" *via* coprecipitation in the amorphous state, but, above 1450°, decomposed rapidly to a tetragonal $ZrO₂$ solid solution and $La₂Zr₂O₇$. ¹⁶⁶ Fluorite-type solid solutions have also been observed at about 14% La₂O_s in another phase study of this system.¹⁶⁹ Recently, the eutectoid was placed at 1850° and 5% La₂O₃.¹⁷⁰ The fluorite phase

(164) R. *S.* Roth,J. *Res. Nut. Bur. Stand., 56,17 (1956).*

- *(168)* R. Collongues, **M.** Perezy Jorba, and **J.** Lefevre, *ibid., 70 (1961).*
- *(169)* T.-H. Lin and H.-C. *Yu, Kuei Sum Yen Hseuh Pao, 3, 159 (1964); Chem Abstr.,62,12491(1965).*
- *(170)* **A.** Rouanet, *C. R. Acad. Sci., Paris, 267,395 (1968).*

⁽¹⁵⁹⁾ A. K. Kuznetsov, L. A. Zimina, and E. K. Keler, Izv. Akad. Nauk SSSR, Neorg. Mater., 4, 1112 (1968).

⁽¹⁶⁰⁾ J. L. Weininger and P. D. Zemany, *J. Chem. Phys., 22, 1469* (*1954).*

⁽¹⁶¹⁾ R. *E.* **W.** Casselton and J. C. Scott, *Phys.Lett., 25A, 264 (1967).*

⁽¹⁶²⁾ F.TrombeandM. Foex, *C. R. Acad.Sci.,Paris,233,254(1951).*

⁽¹⁶³⁾ F. H. Brown and P. Duwez,J. *Amer. Ceram. SOC., 38,95 (1955).*

⁽¹⁶⁵⁾ M. Perez y Jorba, R. Collongues, and J. Lefevre, *C. R. Acad. Sci., Paris, 249,1237 (1959).*

⁽¹⁶⁶⁾ M. Perez **y** Jorba and R. Collongues, *Bull. SOC. Chim. Fr., 1967 (1959).*

⁽¹⁶⁷⁾ **J.** Lefevre, **M.** Perez **y** Jorba, and R. Collongues, *ibid., 1969 (1959).*

was stable from 4 to 8% and 2 to 18% **Laz03** at 2000 and 2200°, respectively.¹⁷⁰

Samples containing 10 and 15% La₂O₃ have lattice parameters of 5.236 and 5.275 **A,** respectively. 166 These values were obtained by quenching from the molten state. For $La_2Zr_2O_7$, lattice parameters of 10.780, 162 10.792, 171 10.793, 164 and 10.797 **A166** have been determined. As these parameters are about twice those given by Trombe and Foëx¹⁶² for compositions containing between 15 and 30% La₂O₃, these authors were undoubtedly studying solid solutions based on $La_2Zr_2O_7$, not fluorite solid solutions.

At 1000°, conductivities of 4.4×10^{-3} ¹⁷² (5% **La₂O₃)**, 2.5×10^{-3} ¹⁶² and 1.1×10^{-3} ¹⁴⁷ (10% La₂O₃), and 2.5 \times 10^{-3} ,¹⁷² 1.1 × 10⁻⁴,¹⁵⁴ and 3.0 × 10⁻³ 1⁴⁷ ohm⁻¹ cm⁻¹ $(15\%$ La₂O₃) have been given. They are much lower than those in Tables IV and VIII, an expected result since the anion vacancies are ordered in the pyrochlore structure. Alternately, a tetragonal ZrO₂ solid solution may control the electrical properties of these mixtures.

Anthony and her coworkers¹⁷²⁻¹⁷⁴ have studied the transport properties of this system. Activation energies for a $ZrO₂$ + 13% La₂O₃ specimen were 15.9, 34.6, and 54.9 kcal/mol at 1200-1400, 1400-1525, and 1525-1650", respectively. **173** The conductivity was essentially independent of oxygen pressure from 1 to 10^{-6} atm at 1300 $^{\circ}$ and was attributed to cation migration through the pyrochlore structure. However, an electrolysis experiment indicated that the mixture was an electronic conductor at 1300". The presence of nonstoichiometric $\text{La}_2\text{Zr}_2\text{O}_7$ above 1400° led to a region of n-type semiconduction proportional to $P_{02}^{-1/6}$, while thermionic emission influenced the results above 1525". The onset of n-type conductivity moved progressively to lower temperatures as the La₂O₃ content increased.¹⁷² This was attributed to a decrease in the cationic conductivity resulting from the presence of fewer lattice defects as the composition approached that of $La₂Zr₂O₇$. This explanation is inconsistent with the phase diagram¹⁶⁸ which indicates that, from 5 to 33% La₂O₃ and below 1500[°], a tetragonal $ZrO₂$ solid solution and stoichiometric $La₂Zr₂O₇$ should coexist. Again, the possibility that the electrical behavior of these mixtures is being controlled by the tetragonal ZrO₂ phase should not be overlooked.

Both $\text{La}_2\text{Zr}_2\text{O}_7^{171,175}$ and nonstoichiometric $\text{La}_2\text{Zr}_2\text{O}_7$ containing excess $La₂O₃¹⁷⁵$ are mixed p-type and ionic conductors at high oxygen pressures. The conductivity reaches a maximum at 40% La₂O₃¹⁷⁵ corresponding to the upper phase boundary for the pyrochlore phase. Ionic transport numbers of only 0.08-0.17 at 900-1100" and an oxygen pressure of about 1 atm were reported for $ZrO₂ + 15\% La₂O₃$. ¹⁵⁴

Factors such as purity, thermal history, grain size, method of preparation, and oxygen pressure will markedly affect the conductivity of these mixtures. **174** The reactivity of the oxides, the sintering conditions, and the cooling rate after sintering will influence the phases present during electrical measurements. Although further studies of the electrical properties of $ZrO₂ - La₂O₃$ mixtures are definitely warranted, they are not to be regarded as potential solid electrolytes.

C. ZrO₂-RARE EARTH OXIDES AND $ZrO_2-Sc_2O_3$

Since Y_2O_3 stabilizes ZrO_2 extremely well, the rare earth oxides might be expected to behave similarly. This should be especially true for the heavier rare earths $(\text{Gd}_2\text{O}_3-\text{Lu}_2\text{O}_3)$ which have the same structure as Y_2O_3 and cations which are comparable in size or smaller than Y^{3+} .

French researchers have studied $ZrO₂$ -rare earth oxide systems in considerable detail. **12-14, 1659** 187, 168, **176--184** The samples were usually prepared **by** melting or coprecipitating the required cations as hydroxides. crystallization of the amorphous coprecipitates occurred between 400 and 700"; the required temperature increased as either the quantity of the rare earth oxide or the radius of the rare earth cation increased.^{13,14} A summary of their results and those of several other studies is given in Table IX. The oxides $Ce₂O₃$, $Pr₂O₃$, and $Tb₂O₃$ have

Table IX

Phase Boundaries of Cubic ZrO₂-Rare Earth Oxide Solid Solutions

Oxide		Temp, $^{\circ}$ C Boundaries, $\%$ M ₂ O ₃	Ref
Nd ₂ O ₃	2000	10 and 44	163
	1000	16 and 42	163
	2000	$9-10$ and 57	168, 178, 179, 181
	1000	12-13 and 40	168, 178, 179, 181
	1300	15–16 and 40	185
Sm ₂ O ₂	2000	7 and 64	178, 179
	1000	10 and 50	178, 179
Eu ₂ O ₃	1300	10 and 55	185
Gd_2O_3	2000	7 and 77	178, 179
	1000	9 and 50	178, 179
$\mathbf{Dy}_2\mathbf{O}_3$	1600	5 and 41	186
	2000	7 and 100	178, 179
	1000	9 and 53	178, 179
Ho_2O_3	1300	4 and 56	185
Yb_2O_3	2000	7 and 100	178, 179
	1000	7–8 and 46	178, 179

been purposely omitted although cubic solid solutions can be formed between ZrO₂ and these oxides.^{182, 187} The cations can be easily oxidized to the $+4$ valence state which renders them unsuitable as solid electrolyte constituents.

Several comments must be made about Table **IX.** Above certain minimum temperatures, the tetragonal and cubic $ZrO₂$ solid solutions are not separated by a two-phase re-

- **(177) M.** Perez y Jorba, F. Queyroux, and R. Collongues, *ibid.,* **253,670 (1961).**
- **(178)** M. Perez **y** Jorba, *Ann. Chim.* (Paris), **7,479 (1962).**

- **(183)** A. Rouanet and M. Foex, *ibid.,* **267,873 (1968).**
- **(184)** A. Rouanet, *ibid.,* **267,1581 (1968).**

⁽¹⁷¹⁾ A. Cocco and **I.** Barbariol, *Univ. Studi Trieste, Fac. Ing., Ist. Chim.,* Appl. No. **13,17** pp **(1963);** *Chem. Abstr.,* **60,5061 (1964).**

⁽¹⁷²⁾ A.-M. Anthony, *C. R. Acad. Sci., Paris,* **256,5130(1963).**

⁽¹⁷³⁾ A.-M. Anthony, *Znd. Ceram.,* **532, 298 (1961);** A.-M. Anthony and **J.** Renon, *C. R. Acad. Sci., Paris,* **256,1718 (1963);** A.-M. Anthony, **F.** Cabannes, and J. Renon, *Ann. Phys.,* **9,** *1* **(1964);** A,-M. Anthony, *J, Intern. Combust. Conversion Energie, Paris,* **719 (1964).**

⁽¹¹⁴⁾ ., A,-M. Anthonv. .. *Bull. SOC. Fr. Ceram.. 55* **(1963).**

⁽¹⁷⁵⁾ *2.* **S.** Volchenkova, *Izv. Akad. Nauk SSSR, Neorg. Mater.,* **4, 1975 (1968);** *Inorg. Mater.,* **4,1717(1968).**

⁽¹⁷⁹ J. Lefevre, R. Collongues, and M. Perez y Jorba, **C.** *R. Acad. Sci., Paris,* **249,2329 (1959).**

⁽¹⁷⁹⁾ R. Collongues, **J.** Lefevre, M. Perez **y** Jorba, and P. Queyroux, *Bull. SOC. Chim. Fr.,* **149 (1962).**

⁽I **80)** M. Perez y Jorba, M. Fayard, and R. Collongues, *ibid.,* **155 (1962). (181)** R. Collongues, F. Queyroux, M. Perez **y** Jorba, and J.4. Gilles, *rbzd.,* **1141 (1965).**

⁽¹⁸²⁾ A. Rouanet, C. *R. Acad. Sci., Paris,* **266,1230(1968).**

⁽¹⁸⁵⁾ H. Radzewitz, *U. S. At. Energy Comm.,* **KFK-433,53** pp **(1966).**

⁽¹⁸⁶⁾ G. L. Ploetz, A. T. Muccigrosso, L. M. Osika, and **W.** R. Jacoby. *J. Amer. Ceram.* **Soc.,43,154(1960).**

⁽¹⁸⁷⁾ A. **I.** Leonov, A. B. Andreeva, and E. **K.** Keler, *Izv. Akad. Nauk SSSR, Neorg. Mater.,* **2,137(1966);** *Ogneupory,* **31,42(1966).**

gion. **¹⁴¹16%** 178 Instead, the transition occurs continuously with a gradual decrease in the *c/a* ratio until it becomes 1 at about 7% of the rare earth oxide. The minimum temperatures are >2000, 2000, 1800, and 1500° for Nd_2O_3 , Sm_2O_3 , Gd_2O_3 , and Yb_2O_3 , respectively. In addition to the lower boundaries shown in Table IX, 6% Sm₂O₃ at 2000°,¹⁴¹ 6% Gd₂O₃ at 2000°,¹⁴¹ 8% Gd₂O₃ at 2000°,¹⁸⁸ and 7% Eu₂O₃ at 1500°¹⁸⁹ were necessary to achieve a single-phase cubic structure.

Pyrochlore-type compounds will form in the systems where $r_{\text{M1}^{+}/r_{\text{Z}r^{4}}}>1.2$ (Ce³⁺-Gd³⁺).^{180, 181} In the ZrO₂-Nd₂O₃ system, the cubic phase was postulated to be nonstoichiometric NdzZr2O7 rather than disordered fluorite solid solutions. **¹⁶⁴** Actually, the fluorite phase exists until 18% Nd₂O₃ and then transforms continuously into the pyrochlore structure.^{167, 178, 179} However, solid solutions containing less than 20% Nd_2O_3 are unstable below 1600° .¹⁹⁰ At 2000°, the pyrochlore phase reverts back to the fluorite phase at 48% Nd₂O₃.^{178,179} Also, the pyrochlore phase extends from 23 to 43% Sm₂O₃^{178, 179} and 29 to 39% Gdz031651 **16% 174 ¹⁷⁹**at 1000". Order-disorder transitions, discussed by Collongues, 191 occur for Sm₂Zr₂O₇ and $Gd_2Zr_2O_7$ at 2400 and 1550°, respectively. Above these temperatures, the pyrochlore phase no longer exists. Consequently, some of the boundaries in Table IX encompass more than one structure, although they all define single-phase regions. The extent of nonstoichiometry of the pyrochlore compounds has been related to the radii of the cations.¹⁸⁰ Solubility limits of 56% Sm₂O₃ and 55% Gd₂O₃ at 2000[°] have also been reported.

Continuous transitions between the fluorite phase and the cubic C-type rare earth oxide phase have also been observed. At 2000", X-ray reflections of the latter first became evident at 58 % Gd₂O₃, ^{178, 188} 55 % Dy₂O₃, ¹⁷⁸ and 48 % Yb₂O₃. ¹⁷⁸ They did not appear until 65% Er₂O₃ and 63% Yb₂O₃ at 2000[°] in Rouanet's study.¹⁸⁴ The single-phase region extends to pure DyzO3 and Ybz03 at **2000"** as shown in Table IX. However, in the $ZrO₂-Dy₂O₃$ system, a two-phase region in which both cubic phases coexist appears below 1650°. In the $ZrO₂-Yb₂O₃$ system, the rhombohedral compound $Yb_4Zr_3O_{12}$ appears below 1620°.^{178, 181} At 1000°, the fluorite phase transforms into this nonstoichiometric compound at 30% Yb₂O₃. Past 46% Yb₂O₃, a two-phase region begins.

The $ZrO₂-Sc₂O₃$ system is an interesting one because of the similar radii of the Zr⁴⁺ and Sc³⁺ ions (Table I). Only 6% Sc2O3 has been necessary to fully stabilize **ZrOz** at 2000,141 1800-2000,¹⁴⁷ and 1750°.¹⁹² The fluorite phase was reported to extend to 32% Sc₂O₃ at 1750[°].¹⁹² Several investigators have shown that this system is quite complex.^{14, 193-195} At 1000°, the fluorite phase extended from 8 to 17% Sc₂O₃, while distorted fluorite structures were found between 17 and 21-22 % and between 31-32 and 39% $Sc₂O₃$.^{14, 193} Strickler and Carl-

son¹⁹⁴ found only one phase in this region which appeared between 16 and 33 $\%$ Sc₂O₃. They indicated that it became cubic at 800° for 16% Sc₂O₃ and 1250 ° for 33 $\%$ Sc₂O₃, whereas Lefevre^{14, 193} maintained that the distorted phases were still stable at 2000°. At low temperatures, another distorted fluorite phase appeared between 12 and 13 $\%$ Sc₂O₃. This phase became cubic above 580^{14, 193} and 610°.¹⁹⁴

The Sc^{3+} ion is too small to prevent the appearance of distorted fluorite phases. More work is required to fully define the range and stability of the cubic phase. Unfortunately, this range may be extremely narrow or nonexistent. Distortion has been apparent in samples containing 10 and 15% Sc₂O_i,³⁷ and it has been suggested that the fluorite range narrows to only 6 to 8 SczOa at room temperature. **¹⁴⁷**

Lattice parameters for several $ZrO₂ + 10\% M₂O₃$ solid solutions are listed in Table X. The oxides Pr_2O_3 and Tb_2O_3 have been included for purposes of comparison.

Table X

	Lattice Parameters for $ZrO2-M2O3$ Solid Solutions					
--	--	--	--	--	--	--

Ionic conductivities for these systems are presented in Table XI. The lower values may be indicative of two-phase systems and may, in fact, contain an electronic contribution. Once again, the maximum conductivities occur at compositions corresponding closely to the lower fluorite phase boundary and have been observed at $14-15\%$ Nd_2O_3 , 196,198 10% Sm_2O_3 , 147 8-10% Gd_2O_3 ,¹⁴⁶ 8% Yb_2O_3 ,^{147, 196} and 8-12% Sc_2O_3 , ¹⁴⁷ Higher rare earth oxide contents result in higher activation energies and lower conductivities. In the fluorite structure, the free radius R_t between the cations through which the oxygen ions must move **is** given **by**

$$
R_t = \frac{a}{\sqrt{6}} - \bar{r}_e \tag{10}
$$

where *a* is the lattice parameter and \bar{r}_e is the average cation radius.135 Since the rare earth oxide cations are larger than the Zr^{4+} ion, the free radius will decrease and, therefore, the activation energy will increase as the rare earth oxide content

⁽¹⁸⁸⁾ T.-H. Lin and H.-C. Yu, *Kuei Suan Yen Hseuh Pao,* 3,229 (1964); *Chem. Abstr.,* 64,1401 (1966).

⁽¹⁸⁹⁾ I. A. Davtyan, **V. B.** Glushkova, and E. **K.** Keler, *120. Akad. Nauk SSSR, Neorg. Mater.,* 2,890(1966).

⁽¹⁹⁰⁾ I. A. Davtyan, V. **B.** Glushkova, and E. K. Keler, *ibid., 1,* 743 (1965); V. B. Glushkova, I. **A.** Davtyan, and E. K. Keler, *ibid.,* 1,1955 (1965).

⁽¹⁹¹⁾ R. Collongues, Ann *Chim.* (Paris), 8,395 (1963).

⁽¹⁹²⁾ H.-H. Moebius, H. Witzmann, and F. Zimmer, *2. Chem.,* **4,** 194 **(1** 964).

⁽¹⁹³⁾ J. Lefevre, *Reo. Haures Temp. Refract.,* 1,229 (1964).

⁽¹⁹⁴⁾ D. W. Strickler and W. G. Carlson, *U. S.-At. Energy Comm.,* CONF-45-2,21 **pp** (1963).

⁽¹⁹⁵⁾ L. N. Komissarova, **B.** I. Pokrovskii, and F. M. Spiridinov, *Khim. Vysokotemp. Mater., Tr. Vses. Sooeshch., 2nd.* 1965,96(1967).

⁽¹⁹⁶⁾ H. Tannenberger, H. Schachner, and P. Kovacs, *Rev. Energ. Primaire,* 2, 19 (1966).

⁽¹⁹⁷⁾ L. L. Fehrenbacher, L. A. Jacobson, and C. T. Lynch in "Proceed-
ings of the 4th Conference on Rare Earth Research, Phoenix, Ariz.,
1964," L. Eyring, Ed., Gordon and Breach, New York, N. Y., 1965, p
687.

Table XI **Ionic Conductivities (ohm⁻¹ cm⁻¹** \times **10²) of ZrO₂-M₂O₃ Electrolyte8 at 1000°a**

M_2O_3	8	9 ز	Composition, $\%$ M_2O_3	15	Ref
Nd_2O_3			0.60		37
				1.7	154
				3.8 ^c	196
				1.4(24.9)	198
Sm_2O_3			5.8(22.0)	2.3(26.1) ^d	147
Gd_2O_3	11		11	3.1 ^d	196 ^b
Yb ₂ O ₃		15		3.2	37
	8.8(17.3)		11 (19.6)	3.9(26.1) ^d	147
				4.9 ^d	1966
Lu ₂ O ₃	1.5			1.2	199
Sc ₂ O ₃			24	13	37
	25(15.2)		25(14.9)	15(15,8) ^d	147
	1.1			0.84	199

⁴ Activation energies (kcal/mol) are in parentheses. ^b Conductivities were extrapolated from **850".** *0* **14%** Nd203. **16% MzOs.**

increases. This explanation was used by Peters and Radeke²⁰⁰ for the $ZrO₂-Gd₂O₃$ system. However, these authors gave a conductivity of only 7×10^{-6} ohm⁻¹ cm⁻¹ at 1000° for $ZrO_2 +$ 12% Gd₂O₃. The corresponding activation energy was 20 kcal/mol. The above argument should fail for the $ZrO₂-Sc₂O₃$ system. Strickler and Carlson¹⁴⁷ have indicated that the activation energy changes very little from 6 to 16% Sc₂O₃. The presence of a second phase or a distorted structure above 12% $Sc₂O₃$ might partially account for the conductivity behavior in this case.

A tendency toward vacancy ordering will be present at the higher defect concentrations, especially in the systems having large trivalent metal ions. This tendency is still apparent in the $ZrO₂-Gd₂O₃$ system and might be observed in the $ZrO₂-Dy₂O₃$ system if samples were annealed for long periods of time around 1200°. Heating a $ZrO_2 + 10\%$ Yb₂O₃ specimen at 10o0" for 2 weeks did not influence its conductivity,196 but, of course, the vacancy concentration is relatively low. Both $\text{Sm}_{2}\text{Zr}_{2}\text{O}_{7}$ and $\text{Sm}_{2.28}$ $\text{Zr}_{1.72}$ $\text{O}_{6.86}$ containing 2 $\%$ anion vacancies have ionic conductivities about two orders of magnitude lower than the $ZrO₂-Sm₂O₃$ fluorite solutions shown in Table XI.²⁰¹ These pyrochlore phases are mixed p-type and ionic conductors at high oxygen pressures. Higher defect concentrations may lead to higher ionic conductivities and ionic transport numbers. However, the pyrochlore phase can only accommodate about 3% anion vacancies.^{178, 179}

For a given composition, the ionic conductivity increases as the radius of the trivalent metal cation decreases. The $ZrO₂$ - Sc_2O_3 electrolytes are twice as conductive as $ZrO_2-Y_2O_3$ or $ZrO₂-Yb₂O₃$ electrolytes at 1000°, although the stability of solid solutions in the former system must be more thoroughly investigated. Because of decreasing lattice distortion, it might be expected that the maximum conductivity in a given system would shift to higher defect concentrations as the radius of the trivalent metal cation decreased. However, such a trend is complicated by the necessity to stabilize the fluorite phase. If ZrOz itself had the fluorite structure, higher conductivities than those in Tables IV, VIII, and XI might have been observed at lower defect concentrations.

Nonlinear Arrhenius plots have been found in these systems^{37, 154, 196, 198, 199} and have been attributed to decomposition of the solid solutions³⁷ and the formation of superstructures. **'99** Usually, lower activation energies appear at the higher temperatures. An electrolyte composed of $ZrO₂ + 8\% Yb₂O₃$ had a conductivity of 6×10^{-2} ohm⁻¹ cm⁻¹ at only 800[°].¹⁹⁶ Unfortunately, the conductivity began to level off above this temperature. Extrapolation of the low-temperature Arrhenius relationship results in a conductivity of 42×10^{-2} ohm⁻¹ cm⁻¹ at 1OOO". More research is required to determine the maximum obtainable stable conductivity of these solid electrolytes. In particular, a detailed investigation of the $ZrO₂-Lu₂O₃$ system might prove fruitful. Likewise, additions of Y_2O_3 , Yb_2O_3 , or Lu_2O_3 to $\text{ZrO}_2-\text{Sc}_2\text{O}_3$ solid solutions might stabilize them without adversely affecting their conductivities. Equilibria between $ZrO₂$ and mixed rare earth oxides occur more readily than between ZrO_2 and individual rare earth oxides.²⁰²

The transport properties of these systems should be similar to those exhibited by ZrO_z-CaO and $ZrO_z-Y_zO₃$ electrolytes. Oxygen concentration cell measurements have been used to show that $ZrO_2 + 15\% Nd_2O_3^{154}$ and $ZrO_2 + 10\% Yb_2O_3^{196}$ have ionic transport numbers of 0.93 at **750-1100"** and about 1 atm of oxygen and >0.99 at 750-1000° and about 10⁻¹⁰ atm of oxygen, respectively. Gas leakage between the oxygen and air electrodes may have resulted in the ionic transport number of only 0.8 reported for $ZrO₂ + 19\% Nd₂O₃$ at 800-1600°.¹⁹⁸ A $ZrO₂ + 25\% Pr₆O₁₁$ sample had a conductivity, which was 95% ionic, of 2.7×10^{-2} ohm⁻¹ cm⁻¹ at 1000° in air.²⁰³ Guillou¹⁹⁸ found a similar sample exhibited 72% ionic conductivity. p-Type conductivity would be expected at high oxygen pressures on account of the stability of the $Pr⁴⁺$ ion.

Finally, it is interesting to note that $ZrO₂ + 7\% Nd₂O₃^{154}$ and $ZrO₂ + 5\frac{m}{6}Nd₂O₃¹⁹⁸$ mixtures were practically pure ionic conductors at 750-1100 and 1400-1600°, respectively. These results indicate that tetragonal $ZrO₂$ solid solutions may be ionic conductors. About 2% of the rare earth oxides or $Sc₂O₃$ should dissolve in tetragonal $ZrO₂$. ^{14, 168, 179, 190, 194 These} solutions are effectively stabilized since the monocfinic-tetragonal transformation temperatures are lowered below 400". **1671 197** Even monoclinic ZrOz will dissolve appreciable amounts of various di- and trivalent metal oxides (21%) ^{22, 33, 141, 163</sub> Investigations of the electrical properties} of these solid solutions would prove interesting.

D. Zr02-Mg0

Several phase diagrams have been published for this system.^{9, 12, 22, 204-207} Cubic solid solutions are stable only at high temperatures and decompose to a tetragonal $ZrO₂$ solid solution and **MgO** at lower temperatures. The results of these phase studies are summarized in Table XII. Phase boundaries of **7** and 20% MgO at 2000" have also been reported.208

⁽¹⁹⁸⁾ M. Guillou. *Rev. Gen. Elec.,* **76,58 (1967).**

⁽¹⁹⁹⁾ H.-H. Moebius and G. Pr0eve.Z. *Chem..* **5.431 (1965).**

i200j H. Peters and K. H. Radeke, *Monaisber. Deut. Akad. Wiss. Berlin,* **10,53 (1968).**

⁽²⁰¹⁾ B. C. H. Steele, B. **E.** Powell, and P. M. R. Moody, *hoc. Brit. Ceram. SOC.,* **10.87 (1968).**

⁽²⁰²⁾ L. L. Fehrenbacher. Bull. *Amer. Ceram. Soc.,* **45,367(1966).**

⁽²⁰³⁾ Z. S. Volchenkova, *Khim. Vysokotemp. Mater., Tr. Vses. Soveshch., Znd,* **1965,65(1967);Z.S.Volchenkovainref 129,p 113.**

⁽²⁰⁴⁾ P. Ebert and E. Cohn, *Z. Anorg. Allg. Chem.,* **213,321 (1933).**

⁽²⁰⁵⁾ A. Cocco and N. Schromek, *Randex Rundsch.,* **590 (1961);** *Chem. Abstr.,* **56,986 (1962).**

⁽²⁰⁶⁾ D. Viechnicki and V. *S.* Stubican, *Nature,* **206,1251 (1965).**

⁽²⁰⁷⁾ C. F. Grain, J. *Amer. Ceram. SOC.,* **50,288 (1967).**

⁽²⁰⁸⁾ I. Hinz and A. Dietzel, *Ber. Deut. Keram. Ges.,* **39,530 (1962).**

Studies indicating cubic solid solutions at 1000^{°209} and boundaries of 18 and 28 % MgO at only **1400°26** must be discounted. The cubic region extends to pure $ZrO₂$ above 2370°.^{206, 207} The solubility of MgO in tetragonal $ZrO₂$ may be less than 1 % at 1300". 207,210

Table *XII* **Phase Relations in the ZrO2-MgO System**

Phase boundaries at 2000 $^{\circ}$, $\%$ MgO	Eutectoid temp, ${}^{\circ}C$	Eutectoid compn, $\%$ MgO	Ref
4 and 30			204
16 and 29	1300	27	22
	1400	14	9
	1400	17	205
8 and 31	1300	26	12
8 and 27	1400	25	206
6 and 21	1400	13	207

Although there is considerable disagreement regarding the eutectoid composition, it is evident that cubic ZrO_z -MgO solid solutions are metastable below 1300–1400°. Heat treatments at 980-1375,²² 1000-1390,⁴⁸ 1200,^{42,45} and 1000-1375 **"211** have resulted in the partial or complete destruction of the cubic phase. Cubic solid solutions having from 3 to 30% MgO can be metastably prepared at only 750" by crystallizing amorphous oxides which had been coprecipitated as hydroxides.^{11, 12, 212, 213} The solid solutions are formed during coprecipitation.²¹⁴ However, they decomposed above 850 $^{\circ}$ and could only be regenerated by heating above 1350". Recently, the tetragonal phase was observed to form within the cubic phase above **500°.215** The decomposition rate reaches a maximum at 1200° ^{9, 211} and increases when the degree of ordering or clustering of defects and impurities increases. **211** Extra X-ray diffraction lines were apparent in samples containing from 15 to 25 **MgO** which were heated between 1400 and **1550°,** and decomposition proceeded more rapidly as the sintering time at 1520° was increased.²¹¹ Also, the rate increases as the number of anion vacancies increases, **211** perhaps because of a greater degree of supersaturation and enhanced diffusion.

Regarding decomposition, the reproducibility among various laboratories is quite reasonable. Equilibrium may be achieved rather easily because of the small size of the Mg^{2+} ion. It begins entering into solution with $ZrO₂$ at a much lower temperature (480°) than the Ca²⁺, Y³⁺, or Ce⁴⁺ ions.²¹⁶

The $ZrO₂ + 15\%$ MgO solid solution has a lattice parameter of 5.072 Å.²⁰⁷ At 1000°, conductivities of 2.0×10^{-2} ,⁵⁷ 4.0×10^{-2} , 129 and 3.4 $\times 10^{-2}$ ²¹⁷ (15% MgO) and 3.8 \times 10^{-2} ⁵⁷ ohm⁻¹ cm⁻¹ (20% MgO) have been shown, while

(214) J. Livage, J. Cabane, and C. Mazieres, ibid., 259, 1337 (1964).

activation energies of 19.6,⁵⁷ 33.7,²¹⁷ and 24.7¹⁹⁸ kcal/mol for $ZrO₂ + 15\%$ MgO have been reported. In all cases, the sintering temperature was 1550-1600". The reactivity of the oxides, the cooling rate, and the measuring temperatures wiU markedly affect the conductivities. Only the cubic phase was claimed to be present in samples containing between **15** and 30 97, MgO which were cooled from 1550° at 100°/hr.²¹⁷ This seems unlikely from the phase diagram. Slope changes in Arrhenius plots at 450 and **750" 57** may be associated with the presence of a two-phase mixture.

The solid solutions are ionic conductors. Electrolysis in argon or vacuum results in oxygen-deficient $ZrO₂$ at the cathode, and the conductivity is essentially independent of oxygen pressure. **1989 ²¹⁷**Theoretical emf's for galvanic cells having $ZrO₂–MgO$ electrolytes have been measured.^{87,93,218} p-Type conductivity is absent at $1500⁸⁷$ and $1600[°]$,²¹⁸ but ntype conductivity readily occurs under reducing conditions. $87,218$ In the cell H₂, H₂O $ZrO₂ + 12\%$ MgO air, n-type conductivity was evident when the anode imposed oxygen pressures of 10^{-20} and 10^{-11} atm at 1000 and 1600°, respectively.²¹⁸

Emf measurements must, in general, be restricted to temperatures below 850°, where the cubic phase may be kinetically stable, and above 1400° with $ZrO₂-MgO$ electrolytes. Nevertheless, MgO could be added to $ZrO₂-CaO$ or $ZrO₂-Y₂O₃$ electrolytes to lower the average cation radius (eq 10). The behavior of ZrQ_x -MgO electrolytes has previously been discussed by Moebius. 64

Any significant solid solubility of SrO in $ZrO₂$ has been denied.^{57, 130, 219} Obviously, the Be²⁺ ion is too small and the Ba²⁺ ion is too large to stabilize $ZrO₂$.

E. Zr02-TRANSITION METAL OXIDES

Coprecipitation in the amorphous state permitted $ZrO₂$ to form cubic solid solutions with MnO, CoO, NiO, CuO, Cr_2O_3 , Mn_2O_3 , and Fe_2O_3 among others.^{11, 12, 212, 213} The solutions decomposed readily at 1000° and could only be regenerated by heating to very high temperatures. For example, a temperature of 2200" was necessary in the case of NiO, CoO, and Cr₂O₃.²¹³ An exception to this rule was MnO, for ZrO₂-MnO solid solutions reappeared at only 1250°.²¹² For this system, a eutectoid point was fixed at 1180° and about 20% MnO.¹² A continuous transition from tetragonal to cubic **ZrOz** could be effected by heating coprecipitated samples at 750° under hydrogen.^{12,220} The single-phase region continued to about 22% MnO.¹² This exceptional behavior is undoubtedly related to the similarity of the radii of the Zr^{4+} and Mn^{2+} cations. The trivalent cation of indium, a nontransition metal, also has a similar radius as Zr⁴⁺. Cubic phase boundaries of 9 and 22 $\%$ In₂O₃ at 1350-1550° have been determined for the $ZrO₂-In₂O₃$ system. ¹⁴²

Recently, Steele, Powell, and Moody201 investigated fluorite phases consisting of $(Zr, Ti) O_2 + Y_2O_3$. The addition of TiO₂ to the $ZrO₂-Y₂O₃$ electrolytes produced both a marked decrease in ionic conductivity and the appearance of n-type conductivity at much higher oxygen pressures. Likewise, a lower conductivity resulted from the addition of Ta_2O_5 to these

⁽²⁰⁹⁾ N. A. Zhirnova, *Zh. Prikl. Khim.*, 12, 1278 (1939).
(210) E. Kauer, O. E. Klinger, and A. Rabenau, *Z. Elektrochem.*, 63,927
(1959).

⁽²¹¹⁾ D. Viechnicki and **V. S.** Stubican, *J.* Amer. Ceram. SOC., 48, 292 (1965); V. **S.** Stubican, Sci. Ceram., 3,285 (1967).

⁽²¹²⁾ J. Stöcker and R. Collongues, *C. R. Acad. Scl., Paris*, 245, 695
(1957).
(213) R. Collongues and J. Stöcker, *ibid.*, 246, 3541 (1958).

⁽²¹⁵⁾ M. Therasseand G. Montel, ibid., 268,495 (1969).

⁽²¹⁶⁾ T. W. Smoot and **J.** R. Ryan, J. Amer. Ceram. SOC., 46,597 (1963). (217) M. Guillou, J. Millet, M. Asquiedge, N. Busson, M. Jacquin, and **S.** Palous, C. *R.* Acad. Sci., Paris, 262,616 (1966).

^(21 8) H.-H. Moebius, *Z.* Phys. *Chem.* (Leipzig), 233,425 (1966).

⁽²¹⁹⁾ R. A. Tarnopol'skaya and N. V. Gul'ko, Dokl. Akad. Nauk *SSSR,* 170, 1140 (1966); T. Noguchi, T. Okubo, and 0. Yonemochi, *J.* Amer. Ceram. SOC., 52,178 (1969).

⁽²²⁰⁾ J. Stocker, R. Collongues, and M. Moser, C. *R.* Acad. Sci., Paris, 246,1698 (1958).

Table XI11

Thermodynamic Property Measurements Using ZrO_2 **-Based Solid Electrolytes**

^aLiquid. *b* Wustite in equilibrium with Fe. **c** Wustite in equilibrium with FezOd. **d** Probably **SnOa** in equilibrium with Sn. **e** Equilibrated with Fe-Si alloys dilute in Si. *f* MS was equilibrated with either MO and **S02,** MO and *SI,* or **M** and **SOZ. p** The intermetallic compound NiGa was considered.

electrolytes.²²¹ In this instance, the Ta⁵⁺ cations will function as vacancy suppressors.

The electrical properties of ZrO₂-based solid electrolytes have recently been discussed by Paidassi and Caillat. 222

⁽²²¹⁾ M. Caillet, C. Deportes, G. Robert, G. Vallier, and G. Vitter, *(222) J. Paidassi and R. Caillat, ibid., 5, 27 (1968). Rev. Hautes Temp. Refract.*, 5, 173 (1968).

F. APPLICATIONS OF ZrO2-BASED SOLID ELECTROLYTES

Zirconia-based electrolytes, especially $ZrO₂$ -CaO, have been used in many different and interesting ways during recent years. These applications will be listed and discussed briefly in this section.

1. Thermodynamic Property Measurements

Galvanic cells incorporating solid oxide electrolytes will often yield very accurate thermodynamic data. However, there are several sources of error which must be avoided. These include chemical reaction between lead wires and electrodes or electrodes and the electrolyte, permeability or electronic conduction in the electrolyte, vaporization of the electrodes, electrical pickup from the furnace windings, thermal emf's, and thermionic emission which could result in asymmetry potentials or short-circuiting by the gaseous environment. Mixed potentials can arise from chemical reactions or interference from the cell atmosphere. The electrodes must be operating reversibly, a requirement that is often not considered. Reversibility, and often absence of mixed potentials, can be checked by either passing small currents through the cell in both directions or adding small amounts of an oxygen-bearing gas, and observing whether or not the emf returns to its original value. The emf should be unaffected by time, temperature cycling, and gas **Row** rate and be reproducible from run to run.

The systems which have been studied with $ZrO₂$ -based electrolytes are listed in Table **XIII.** When only one binary

- (224) T. C. Wilder, *Trans. Met. Soc. AIME*, 236, 1035 (1966).
- (225) F. E. Rizzo, L. R. Bidwell, and D. F. Frank, *ibid.,* 239,593 (1967).
- (226) **J.** Osterwald, *2. Metallk.,* 59,573 (1968).
- (227) **J.** Gerlach, **J.** Osterwald, and W. Stichel, *ibid.,* 59,576 (1968).
- (228) G. G. Charette and S. N. Flengas, *J. Electrochem. Soc.*, 115, 796
(1968).
- (229) R. J. Fruehan and F. D. Richardson, *Trans. Met.* **SOC.** *AIME,* 245, 1721 (1969).
- (230) L. R. Bidwell, *J. Electrochem. Soc.*, 114, 30 (1967).
- (231) R. W. Taylor and H. Schmalzried, *J. Phys. Chem.,* 68,2444(1964).
- (232) H. F. Rizzo, R. S. Gordon, and I. B. Cutler, J. *Electrochem.* **SOC.,**

116,266 (1969); H. F. Rizzo, R. S. Gordon, and **I.** B. Cutler in ref 91, p 129.

- (233) N. Birks, *Nature,* 210,407 (1966).
- (234) R. L. Pastorek and R. A. Rapp, *Trans.* Met **SOC.** *AIME,* 245,171 1 (1969) .
- (235) R. N. Blumenthal and D. H. Whitmore, *J. Amer. Ceram. Soc.,* 44, *508* (1961).
- (236) C. B. Alcock and T. N. Belford, *Trans. Faraday* Soc., 60, 822 (1964).
- (237) *2.* Kozuka, P. Siahaan, and **J.** Moriyama, *Trans. Jap. Inst. Metals,* 9,200 (1 968).
- (238) G. R. Newns and J. M. Pelmore, *J. Chem. Soc.*, *A*, 360 (1968).
- (239) K. Schwerdtfeger and A. Muan, *Trans. Met. Soc. AIME*, 239, 1114 (1967).
- (240) S. Seetheraman and **I<.** P. Abraham, *Indian J. Technol.,* 6, 123 (1968).
- (241) H.-J. Engell,Z.Phys. *Chem.* (Frankfurt am Main), 35, 192 (1962). (242) I. V. Gordeev, Y. D. Tretyakov, and K. G. Khomyakov, *Vestn. Mosk. Unia., Ser. II,* 18,59 (1963).
- (243) G. A. Roeder and W. W. Smeltzer, J. *Electrochem.* Soc., 111, 1074
- (1964) . (244) I. V. Gordeev, Y. D. Tretyakov, and **I<.** G. Khomyakov, *Zh. Veorg. Khim.,* 9,164(1964); *Russ.J. Inorg. Chem.,* 9,89 (1964).
- (245) *Y.* D. Tretyakov, *Y.* G. Saksonov, and I. V. Gordeev, *Izc. Akad. NaukSSSR, Neorg. Marer.,* 1,413 (1965).
-
- (246) K.-H. Ulrich, K. Bohnenkamp, and H.-J. Engell, *Z. Phys. Chem.*
(Frankfurt am Main), 51, 35 (1966).
- (247) I. V. Gordeev and *Y.* D. Tretyakov, *Vesrn. Mosh. Unic., Ser. II,* 18,32 (1963).
- (248) **H.** Schmalzried and *Y.* D. Tretyakov. *Rer. Bunsenges. Phys. Chem.,* 70. lSO(1966).

oxide is shown, it was equilibrated with the corresponding metal (except for CuO, Fe₃O₄, WO_{2.72}, WO_{2.90}, WO₃, and SiO₂) and, consequently, free energy data were obtained for the metal-saturated oxide phase. When two binary oxides are shown, their equilibrium oxygen potentials were measured. Additional emf data are available for the cells Ni, NiO[|]ZrO₂-CaO[|]Cu, Cu₂O,^{110,115,236,265,266,291 Fe, Fe_zO[|]} $ZrO₂-CaO|Ni$, NiO, 101, 102, 117, 243 Fe, Fe_zO|ZrO₂-CaO|Fe_zO, $Fe₃O₄$, $85, 85, 117, 243, 249, 251, 280, 282$ Fe, $Fe₄O$ $ZrO₂-CaO$ $Fe₃O₄$,

- (249) I. V. Gordeev and *Y.* D. Tretyakov, *Zh. Neorg. Khim., 8,* 1814 (1963); *Russ. J. Inorg. Chem.,* 8,943 (1963).
- (250) V. I. Roshchupkin and **V.** I. Lavrent'ev, *Izu. Akad. Nauk SSSR, Neorg. Mater.,* 3,551 (1967).
- (251) T. N. Rezukhina, **V.** A. Levitskii, and N. M. Kazimirova, *Zh. Fiz. Khim.,* 35,2639 (1961); *Russ. J. Phys. Chem.,* 35,1305 (1961).
- (252) V. A. Levitskii and T. N. Rezukhina, *Zh. Fiz. Khim.,* 37, 1135 (1963); Russ. J. *Phys. Chem.,* 37,599 (1963).
- (253) H. Schmalzried, *Z. Phys. Chem.* (Frankfurt am Main), 25, 178
(1960).
- (254) R. **J.** Fruehan, *Trans. Met.* **SOC.** *AIME,* 245,1215 (1969).
- (255) R. Benz and H. Schmalzried, *Z. Phys. Chem.* (Frankfurt am Main), 29, 77 (1961).
- (256) G. G. Charette and S. N. Flengas, *Can. Mer. Quart.,* 7, 191 (1968).
- (257) H. *S.Ray,IndianJ. Chem.,* 6,736(1968).
- (258) H. **S.** Ray, *ibid.,* 6,738 (1968).
- (259) J. N. Pratt and W. G. Budgen, *U. S. Govt. Res. Develop. Rep.*, 68, 81 (1968); Avail. CFSTI, AD665821, 1967, 33 pp.
- (260) L. R. Bidwell and R. Speiser, *Acra Met.,* 13,61 (1965).
- (261) K. Schwerdtfeger and A. Muan, *ibid.,* 13,509 (1965).
- (262) C. B. Alcock and A. Kubik, *ibid.,* 17,437 (1969).
-
- (263) L. R. Bidwell, W. **J.** Schulz, and R. K. Saxer, *ibid.,* 15, 1143 (1967).
- (264)'hI. Sundareszn, Y. I. Gerasimov, V. A. Geiderikh, and I. A. Vasi1'- eva, *Zh. Fiz. Khiw..* 31, 2462 (1963); *Russ.* J. *Phys. Chem.,* 37, 1330 (1963).
- (265) C. M. Sellars and F. Maak, *Trans. Met. Soc. AIME*, 236, 457 (1966).
- (266) R. A. Rapp and F. Maak, *Acfa Mer.,* 10,63 (1962).
- (267) G. B. Barbi, *Ann. Chim.* (Rome), 56,992(1966).
- (268) A. U. Seybolt, J. *Electrochem.* **SOC.,** 111,697 (1964).
- (269) C. R. Cavanaugh and J. F. Elliott, *Trans. Met. Soc. AIME*, 230, 633 (1964).
- (270) T. C. Wildcr and W. E. Galin, *ibid.,* 245,1287 (1969).
- (271) S. Aronsonand **J.** Belle, *J. Chem. Phys.,* 29, 151 (1958).
- (272) **I<.** Kiukkola, *Acra Chem. Scand.,* 16,327 (1962).
-
- (273) T. L. Markin, L. E. J. Roberts, and A. Walter, *Thermodyn. Nucl. Mater., Proc. Symp., 1962*, 693 (1962); T. L. Markin and R. J. Bones, U.K. A.E.A. Reports AERE-R4042 (22 pp) and AERE-R4178 (43 pp), 1962.
-
- (274) *S.* Aronson and **J.** C. Clayton, *J. Chem. Phys.,* 32,749 (1960).
- (275) S. Aronson and **J.** C. Clayton, *ibid.,* 35,1055 (1961).
- (276) **S.** Pizzini and R. Morlotti, J. *Electrochem.* **SOC.,** 114,1179 (1967).
- (277) H. G. Sockel and H. Schmelzried, *Ber. Bunsenges. Phys. Chem.,* 72, 745 (1968).
- (278) Y. D. Tretyakov and R. A. Rapp, *Trans. Met. Soc. AIME*, 245, 1235 (1969).
- (279) M. S. Yakovleva and S. M. Ariya, *Vestn. Leningrad Univ., Ser. Fiz. Khim.,* 18, 130 (1963).
- (280) G. B. Barbi, *J. Phj,s. Chem.,* 68,2912 (1964).
- (281) F. E. Rizzo and J. V. Smith, *ibid.,* 72,485 (1968).
- (282) B. E. F. Fender and F. D. Riley, *J. Phys. Chem. Solids,* 30, 793 (1969).
- (283) V. F. Koinarov, N. N. Oleinikov, and *Y.* D. Tretyakov, *Izv. Akad. Nauk SSSR, Neorg. Mater.,* 3, 1064 (1967).
- (284) V. I. Roshchupkin and V. I. Lavrent'ev, *ibid.,* 2,712(1966).
- (285) *Y.* D. Tretyakov, *ibid.,* 1, 1928 (1965).
- (286) A. S. Guzei, **V. T.** Lavrent'ev, and T. I. Bulgakova, *ibid.,* 3, 860 $(1967).$

(1907).
(287) A. S. Guzei, V. I. Lavrent'ev, T. I. Bulgakova, O. S. Zaitsev, and
E. I. Rosenfel'd, *ibid.*, 3, 909 (1967); V. I. Lavrent'ev, A. S. Guzei, T. I.
Bulgakova, and G. A. Sokolova, Zh. Fiz. Khim., 41, 3114 (1967)

(288) H. Peters and H.-H. Moebius, Z. Phys. Chem. (Leipzig), 209, 298 (I95 *6).*

(289) H. Peters md **H.-II.** Moebius, *Naturwissenschaften,* 45, 309 (1958)

- (290) R. Hartung and H.-H. Moebius, *Chem.-Ing.-Tech.,* 40,592(1968).
- (291) W. A. Yuill and E. D. C?ter, *J.Phys. Chem.,* 71,1436(1967).

___- (223) **J.** Osterwald, Z. *Phys. Chem.* (Frankfurt am Main), 49,138 (1966).

 $Fe₂O₃$ ²⁴⁹ Fe₂O, Fe₃O₄|ZrO₂-CaO|Ni, NiO,^{102,243} and Co, CoO ZrO_2 -CaO $|Fe, Fe_2O.$ ^{249, 261}

Measurements on the simple binary oxides are extremely important since the data for these are needed to calculate the thermodynamic properties of the remaining systems in Table XI11 (excluding alloys, nonstoichiometric compounds, and gas mixtures). In addition, a metal and its lowest oxide are almost invariably used as the reference electrode, although oxygen or air are sometimes used if the electrode chambers can be adequately separated. Accuracies exceeding ± 1 mV have been achieved, ^{101, 106, 228, 230, 256} leading to free energy data accurate to better than ± 100 cal/¹/₂O₂.²²⁸ Measurements have been extended down to **4001151233** and **35Oo.11O**

To study binary alloys, the alloy is equilibrated with the lowest oxide of the less noble metal, shown on the right in Table XIII. The activity of this metal can be measured directly. Polarization of the alloy electrode, discussed by Rapp and Maak,²⁶⁶ can occur easily and must be avoided. Investigations of nonstoichiometric compounds lead to information about defect structures. In many instances, the composition has been a technique which has been discussed by several authors. ^{277, 292, 293 Gaseous reference electrodes may be undesirable} since higher emf's will usually be measured resulting in a larger error in the presence of a small electronic conductivity in the electrolyte. With regard to solid reference electrodes, Fe-FezO is far superior to Ni-NiO on account of higher cation diffusion rates in the former.²⁹³ Both Ni-NiO²⁹⁴ and Co- $CoO²³⁴$ electrodes polarize rather easily. The Fe₂O-Fe₃O₄ electrode behaved extremely well after an Fe-Fe_zO mixture interacted with the electrolyte. **²³⁴** varied *via* coulometric titration, 110, 232, 248, 272, 273, 277, 278, 281, 282

A study of the W-O system²⁹⁵ has not been included in Table XI11 under nonstoichiometric compounds since this system is comprised of several oxides, each having only a small range of nonstoichiometry.¹⁰⁴

2. Oxygen Dissolved in Metals

Oxygen-ion conducting solid electrolytes based on ZrO₂ have been used to determine the activity of oxygen in Pb,^{236,296} Sn,²⁹⁶ Ni,^{297,298} Co,^{297,298} Ag,^{296,299,300} **C~,112,224,227,294,297,300-304** Fell4 **116,122-126.128,297,298,305-310** Cu-

- (292) C. Wagner, *U. S. At. Energy Comm.,* WAPD-l44,38pp (1955).
- (293) B. C. H. Steeleinref 91,p 165.
- (294) C. Diaz and F. **D.** Richardson, *Inst. Mining Met. Trans.,* 76C, 196 119671.
- (295)'R. F. Ksenofontova, I. A. Vasil'eva, and Y. I. Gerasimov, *Dokl. Akad. Nauk SSSR,* 143,1105 (1962); *Dokl. Chem.,* 143,314 (1962).
- (296) W. A. Fischer and W. Ackermann, *Arch. Eisenhuettenw.,* 37, 697 (1966).
- (297) W. A. Fischer and W. Ackermann, *ibid.,* 37,43 (1966).
- (298) W. A. Fischer and W. Ackermann, *ibid.,* 37,779 (1966).
- (299) C. Diaz, C. R. Masson, and **F.** D. Richardson, *Inst. Mining Met. Trans.,* 75C, 183 (1966).
- (300) C. M. Diaz and F. D. Richardson in ref 34, p 29.
- (301) H. Rickert and H. Wagner, *Electrochim. Acta,* 11,83 (1966).
- (302) H. Rickert, H. Wagner, and R. Steiner, *Chem.-Ing.-Tech.,* 38, 618 (1966).
- (303) H. Wagner and H. Sundermann, *Fresenius' 2. Anal. Chem.,* 222, 217 (1966); H. Sundermann and H. Wagner, *U.* S. *At. Energy Comm.,* KFK-819.38 *vv* (1968).
- (304) M. **M.** A. El-Niggar, *G.* B. Horsley, and N. A. D. Parlee, *Trans. Met. SOC. AIME,* 239,1994(1967).
- (305) K. Goto and Y. Matsushita, *Tetsu To Hagane,* 51, 1825 (1965); 52,827 (1966).
- (306) W. A. Fischer and W. Haussmann, *Arch. Eisenhuettenw.,* 37, 959 (1966).
- (307) *G.* R. Fitterer, J. *Metals,* 18,961 (1966); 19 (9 , 92 (1967). *G.* R. Fitterer, C. D. Cassler, and V. L. Vierbicky, *ibid., 2d (6),* 74 *(19k8);* **21** (8), 46 (1969).

 $Sn, ^{229}$ Cu-Ag,²²⁹ Fe-Cr,²⁵⁴ and Fe-Si¹¹⁴ melts. Recently, the solubility of oxygen in solid²³⁴ and liquid^{227,301} copper was measured using, in part, the method of coulometric titration. In addition, the effect of S in Co and Ni melts,298 and the effect of S ,^{122,298} P,¹²² C,¹²² and Co, Ni, Cr, and V³⁰⁶ in Fe melts on the oxygen activity has been observed. Fischer³¹¹ has recently published a summary of many of his results. Sievert's and Henry's laws are usually obeyed, although slight deviations near the solubility limit of oxygen in liquid copper have been noted.^{294,301}

Several problems are inherent in these measurements. Satisfactory conducting leads must be found that will withstand the highly corrosive liquid metals. Cermets consisting of 72% Cr and 28% Al₂O₃ in the case of Cu^{229, 294} and 80% Mo and 20% Al₂O₃ in the case of Fe¹²⁸ function quite well. Also, Mo, Ta, and Cr_2O_3 in Cu and Mo in Fe are often satisfactory. In the case of liquid steel, thermal shock resistance of the electrolyte must be fairly high. Instead of using a ceramic tube, an electrolyte disk is fused into the end of a quartz tube.^{124, 128, 254, 307} Alternately, an oxide powder can be rammed into the quartz tube.¹²⁴ The usual reference electrodes (air, Ni-NiO, Fe-Fe_zO) are adequate, while CO_2 (as $CaCO_3$)³⁰⁷ and $Cr-Cr_2O_3^{128}$ have been suggested. Fortunately, only short immersion times in the steel are required to effect a stable reading. Times of **20-25 310** and **3-6lz8** sec have been considered necessary. Lastly, electronic conduction in the electrolyte may interfere in strongly deoxidized steel. Readings have been successfully obtained down to 200,^{122,123,297,310} 100,¹¹⁴ and ppm by weight of oxygen. By comparison, **3** ppm of oxygen in copper could be determined.²²⁴ Several investigators have discussed the electrochemical determination of oxygen in liquid steel. **312--314**

An interesting extension of this technique is the electrochemical measurement of oxygen diffusion coefficients in solid and liquid metals. Successful results have been reported for solid silver,^{302,315,316} liquid silver,^{317,318} solid copper,^{234,319} and liquid copper. **318, s20** Potentiostatic or galvanostatic methods are used. In the former, a potential is applied to the cell to reduce the oxygen content in the metal at the metal-electrolyte interface to virtually zero, and the current is measured as a function of time. An appropriate solution of Fick's second law can then be applied.

3. Oxygen in High-Temperature Gases

Oxygen pressures can be monitored in O_2 ($P \leq 1$

- (308) P. Catoul, P. Tyou, and A. Hans, *Cent. Nat. Rech. Met.,* (11) 57 (1967).
- (309) K. H. Ulrich and K. Borowski, *Arch. Eisenhuettenw.,* 39, 259 (1968).
- (310) J. K. Pargeter and D. K. Faurschou, J. *Metals,* 21 (3), 46 (1969).
- (31 1) W. A. Fischer, *Arch. Eisenhuettenw.,* 38,422(1967).
- (312) R. Littlewood, *Can. Met. Quart.,* 5,1(1966).
- (313) W. A. Fischer, *Berg Huettenmaenn. Monatsber.,* 113,141 (1968).
- (3141 E. Foerster and H. Rickert, *Arch Eisenhuettenw.,* 40,475 (1969).
-
- (315) H. Rickert and R. Steiner, *Naturwissenschaften,* 52, 451 (1965); *2. Phys. Chem.* (Frankfurt am Main), 49, 127 (1966); H. Rickert in ref 34, p 59.
- (316) *J.* C. Bazan, *Electrochim. Acta,* 13,1883 (1968).
- (317) C. R. Masson and **S.** G. Whiteway, *Can. Met. Quart., 6,* 199 (1967).
- (318) H. Rickert and A. A. El Miligy, *Z. Merallk.,* 59,635 (1968).
- (319) R. A. Rapp in "Thermodynamics of Nuclear Materials," Inter-national Atomic Energy Agency, Vienna, 1968, p 559.

(320) J. Ostenvald and G. Schwarzlose, *2. Phys. Chem.* (Frankfurt am Main), 62,119 (1968).

 atm), ^{304, 321–323} Ar–O₂, ^{116, 323–327} CO–CO₂, ^{66, 116, 218, 288, 289, 304} H₂-H₂O, 123, 218, 290, 303, 827, 328 and CO-CO₂-H₂-H₂O^{52, 324, 329, 330} gases. In pure oxygen at reduced pressures, the Nernst equation has been verified to 10^{-5} atm at $600-750^{\circ}$ ³²¹ and 10^{-6} atm at 700 $^{\circ}$.³⁰⁴ Deviations have been experienced below 10^{-3} atm in Ar-O₂ mixtures.^{323,325} The emf became dependent on flow rate, an effect which was more severe as the oxygen pressure decreased. Under suitable flow conditions, Nernst behavior could be extended to 10^{-4} atm of oxygen.³²⁶ In CO-CO₂ and H_2-H_2O mixtures, close agreement between measured and calculated emf's $\left(\langle 1 \frac{\gamma}{6} \rangle \right)$ has been observed.^{52,290,328} Pressures down to those where carbon deposition occurs are readily measured in CO-CO2 mixtures, while Nernst behavior has been observed down to **21*** and 10-l9 **123** atm of oxygen at 1000° in H_r-H₂O mixtures. Measurements at temperatures as low as 400^{°303, 327, 330} and as high as 1600²¹⁸ and 1750[°] ¹²³ have been reported. The theoretical electrode potentials for these gas mixtures have been extensively discussed by Moebius, **³³¹** while the use of an oxygen probe for controlling furnace atmospheres has been considered by Fairbank. **³³²**

Several interesting extensions of gas equilibria measurements are possible. The oxygen content of purified argon gas can be determined.^{115,236,333} Oxygen pressures of about 10^{-15} atm at 800-1000° have been measured after the argon was dried and passed over titanium granules at 900-950 ". The oxygen permeability of refractory materials can be evaluated by measuring the amount of oxygen leakage through them with solid electrolyte cells.^{90, 334} Lastly, the deoxidation of inert gases can be monitored. **³³⁵**

4. Fuel Cells

High-temperature solid-electrolyte fuel cells are noncorrosive, simple to construct, easy to miniaturize, require no catalysts, and offer chemical, thermal, and mechanical stability. Since the electrolyte transports O^{2-} ions to the anode, many different fuels can be used. However, the electrolytes have quite low conductivities, necessitating the use of high temperatures (>900"). With this restriction, problems of heating the cell and providing invariant, inexpensive electrode materials must be overcome. During the past 10 years, many investigations on the properties of these cells have been reported,^{52,78,328,329,338-353}

- **(322) W.** M. Hickam, *Vacuum Microbalance Tech.,* **4,47 (1965).**
- **(323)** M. Kleitz, J. Besson, and C. Deportes, *Rev. Energ. Primaire,* **2, 35 (1966).**
- **(324)** R. Littlewood, *Steel Times,* **189,423 (1964).**
- **(325)** C. Deportes, P. Donneaud, and G. Robert, *Bull. SOC. Chim. Fr.,* **2221 (1964).**
- **(326)** P. Donneaud, *Rev. Hautes Temp. Refract.,* **3,157 (1966).**
-
- **(327)** H. Ullmann, D. Naumann, and **W.** Burk, *Z. Phys. Chem.* (Leipzig), **237, 337 (1968). (328) J.** Weissbart and R. Ruka, *J. Electrochem. SOC.,* **109,723 (1962).**
-
- **(329)** D. H. Archer, L. Elikan, and R. L. Zahradnik in "Hydrocarbon Fuel Cell Technology," B. **S.** Baker, Ed., Academic Press, New York, N.Y., **1965,p51.**
- **(330) W.** M. Hickam and J. F. Zamaria, *Instrum. Contr. Syst.,* **40, 87 (1967).**
- **(331)** H.-H. Moebius, *Z. Phys. Chem.* (Leipzig), **230,396 (1965).**
- **(332)** L. H. Fairbank, *Metallurgiu,* **79, 179 (1969).**
- **(333)** A. Mitchell, *Nature,* **201,390 (1964).**
- **(334)** H.-H. Moebius and R. Hartung, *Silikattechnik,* **16,276 (1965).**
- **(335)** H.-H. Moebius and R. Mueller-Uri, *2. Chem.,* **9,158 (1969).**
- **(336) S.** F. Pal'guev and *Z.* **S.** Volchenkova, *Tr. Inst. Khim., Akad. Nauk SSSR, Ural. Filial,* **2,183 (1958);** *Chem. Abstr.,* **54,9542 (1960).**
-
- **(337)** E. B. Shultz, Jr., K. **S.** Vorres, L. G. Marianowskii, and H. R. Linden, *Amer. Chem. Soc., Diu. Petrol. Chem., Prepr.,* **6,9 (1961).**
- **(338)** D. H. Archer, E. F. Sverdrup, and W. A. English, *ibid.,* **7, 185 (1963).**

with special emphasis on electrolytes, 336, **3433 361** anode material~,7~8 **350** cathode materials,78~ **348, 349,** 353 anode polarization,^{52,329,342,345} and cathode polarization.^{342,347} The fuel cell most commonly studied is Pt, H_2 , $H_2O|ZrO_2 + Y_2O_3$ or CaO| O_2 or air, Pt. The Zr O_2 -Y₂ O_3 electrolytes are preferable because of their higher conductivity and lower vacancy concentration (4.1 $\%$ anion vacancies are necessary to obtain the maximum conductivity). Consequently, the tendency toward vacancy ordering or clustering during extended times at 800- **1200"** would be decreased. Suitable alternative electrolyte systems include $ZrO_x-Yb₂O₃^{345,347}$ and $ZrO_x-Y₂O_x-MgO_x^{351,352}$ Flame-sprayed electrolyte films^{354,355} result in much lower resistance losses. In addition to H₂ gas, CO,^{52, 329, 339 - 341, 343, 351} C0-H2,329,341 and hydrocarbons (usually mixed with *CO2* or H20)52s78v **328,** 337, **340** can be used as fuels. Equations describing the anodic oxidation of hydrocarbons have been derived. **52,** ³⁶⁶

Suitable replacements for Pt electrodes are highly desirable. Other anode materials include C,^{78, 343} Ni, ^{343, 345, 347} U, Ce, or Pr oxides mixed with $ZrO₂,³⁴³ TiO_{2-x},³⁵⁰ ZrO₂-NiO,³⁵⁰ CeO₂ ThO₂$ ³⁵¹ and $U(Zr, Y)O_z$. ³⁵² Cathode materials must withstand severe oxidizing conditions. Possible alternatives to Pt include Ag (solid or liquid),^{78, 340, 343, 345, 347, 352 $SnO₂$ (+Sb), ³⁴⁸ In₂O₃} $(+Sb \text{ or } Sn)$,³⁴⁸ 0.95ZnO-0.05ZrO₂,³⁴⁹ 0.97ZnO-0.03- Al_2O_3 ^{349,350} and Ce or Pr oxides mixed with ZrO_2 .^{343,351} The properties of many cathode materials have recently been evaluated, and doped $SnO₂$ and $PrCoO₃$ were found the most satisfactory. **353** Silver is attractive because of its high diffusion coefficient for oxygen, but evaporates too rapidly for many applications.

During the passage of current, processes of gas diffusion, adsorption of the fuel onto the electrode or electrolyte, discharge of O^{2-} ions, surface migration to the reaction sites, reaction of adsorbed oxygen with the fuel, and desorption of the reaction product occur at the anode. If any of these steps

- **(340)** *S.* Toshima, T. Murakami, N. Kimura, *Y.* Niizeki, and *Y.* Hata, *Denki Kagaku,* **32,736 (1964).**
- **(341)** D. H. Archer, J. J. Alles, **W.** A. English, L. Elikan, E. F. Sverdrup, and R. L. Zahradnik, *Advan. Ceram. Ser.,* **47, 332 (1965);** R. **L.** Zahradnik, L. Elikan, and D. H. Archer, *ibid.,* **47, 343 (1965); E. F.** Sverdrup and D. H. Archer, Proceedings of the 3rd Annual Conference on Energy Conversion and Storage, Stillwater, Okla., **1965.**
- **(342)** E. F. Sverdrup, D. H. Archer, J. J. Alles, and A. D. Glasser in "Hydrocarbon Fuel Cell Technology," B. **S.** Baker, Ed., Academic Press, New York, N. Y., **1965,** p **311.**
- **(343)** H.-H. Moebius and B. Rohland, *Rev. Energ. Primaire,* **2,27 (1966).**
- **(344)** T. Takahashi, K. Ito, and H. Iwahara, *ibid.,* **2,42 (1966).**
- **(345)** H. Schachner and H. Tannenberger, *ibid.,* **2,49 (1966).**
- **(346)** D. Singman,J. *Electrochem.* **SOC., 113,502 (1966).**
- **(347)** H. Tannenberger and H. Siegert, *Amer. Chem.* **SOC.,** *Diu. Fuel Chem., Prepr.,* **11,197 (1967).**
- **(348) E. F.** Sverdrup, D. H. Archer, and A. D. Glasser, *ibid.,* **11, 229** (**19 67).**
- **(349) T.** Takahashi, *Y.* Suzuki, K. Ito, and H. Hasegawa, *Denki Kagaku,* **35,201 (1967).**
- **(350)** T. Takehiko, *Y.* Suzuki, K. Ito, and H. Yamanaka, *ibid.,* **36, 345** (**1968).**
- **(351)** H.-H. Moebius and B. Rohland, *Abh. Saechs. Akad. Wiss. LiepTig, Math.-Narurwiss. Kl.,* **49, 343 (1968);** B. Rohland and H.-H. Moebius, *ibrd.,* **49,355 (1968).**
- **(352) B.** Rohland and H.-H. Moebius, *Naturwissenschaften, 55,* **227 (1968).**
- **(353) C. S.** Tedmon, Jr., H. **S.** Spacil, and *S.* P. Mitoff. *J. Electrochem. SOC.,* **116,1170(1969).**
- **(354)** J. L. Bliton and H. L. Rechter, *Bull. Amer. Ceram. SOC.,* **40, 683 (1961); J. L.** Bliton, H. L. Rechter, and Y. Harada, **ibid.,42,6(1963).**
- **(355)** M. L. Ezerskii, E. **I.** Kolesnikov, V. *S.* Bagotskii, M. G. Trofimov, and L. N. Rastorguev, *Izu. Akad. Nauk SSSR, Neorg. Mater.,* **4, 549**
- **(1 968).**
- (356) A. L. L'vov and E. N. Gushchina, *Elektrokhimiya*, 3, 689 (1967);
Sov. Electrochem., 3, 605 (1967); A. L. L'vov, *Elektrokhimiya*, 4, 937
(1968); S*ov. Electrochem.*, 4, 844 (1968).

⁽³²¹⁾ J. Weissbart and R. Ruka, *Reu. Sci. Instrum.,* **32,593 (1961).**

⁽³³⁹⁾ D. H. Archer, E. F. Sverdrup, and R. L. Zahradnik, *Chem. Eng. Progr.,* **60,64 (1964).**

are slow, concentration or activation polarization will result. With $H₂$ as the fuel, polarization (excluding resistance polarization) is essentially absent at 800-1100°.^{52, 328, 329, 338, 340,} 341,346,350 This evidence seems to refute the conclusion that the reaction $H_2 + O^{2-} \rightarrow H_2O + 2e$ is irreversible at 750-1000°³⁴² The polarization observed in another study³⁴⁴ at 600 and 800" may have occurred because the Pt electrodes were too dense and interfered with diffusion and desorption processes. Ideal behavior usually occurs with hydrocarbon fuels, undoubtedly since the electrode reaction involves H_2 . However, significant polarization is observed with CO fuel. 52 . 329, 340, 351 This can be eliminated by adding only $3-5\%$ H₂O to the gas stream. **³²⁹**

Several Russian investigations have been reported which dealt with polarization of Pt electrodes in contact with $ZrO₂$ based electrolytes in both CO-CO₂357-361 and O₂358, 361-364 atmospheres. Polarization has been observed with CO-CO₂ mixtures at 900–1100[°] ^{357–361} and accounted for by postulating that the adsorbed oxygen concentration builds up at the anode owing to its slow reaction with CO. **359** Decreasing the CO/COz ratio decreases the polarization. **329,** *359* Polarization is negligible at the cathode, $342, 347, 358, 362$ even at current densities of 200 mA/cm² at 800° ³⁴⁷ and 750 mA/cm² at **1000°.342** Nevertheless, it is readily observable if the threephase interface area (electrode, gas, and electrolyte) is reduced too much by making the electrodes too dense.364

Reviews on solid-electrolyte fuel cells are available in the literature.³⁶⁵⁻³⁶⁹ Electrode processes^{323, 331, 370, 371} and fuel cell efficiencies^{372, 373} have also been considered.

5. Kinetics

The measurement of oxygen activities in liquid metals and gas mixtures can readily be extended to observation of the rates of various chemical reactions. The absorption and evolution of

- **(358)** A. D. Neuimin, **S.** V. Karpachev, and **S.** F. Pal'guev, *Dokl. Akad. Nauk SSSR,* **141,402 (1961);** *Dokl. Phys. Chem.,* **141,875 (1961).**
- **(359) S. V.** Karpachev, **A.** T. Filyaev, and *S.* F. Pal'guev, *Electrochim. Acta,* **9,1681 (1964).**
- **(360)** M. V. Glumov, A. D. Neuimin, and **S.** F. *Pal'guev,Elektrokhimiya,* **4,1234 (1968);** *Sou. Electrochem.,4,1114(1968).*
- **(361) S.** V. Karpachev and Y. M. Ovchinnikov, *Elektrokhimiya,* **5, 200 (1969);** *Sou. Electrochem.,* **5, 181 (1969).**
- (362) M. V. Perfil'ev and S. F. Pal'guev in "Electrochemistry of Molten
and Solid Electrolytes," Vol. 4, A. N. Baraboshkin and S. F. Pal'guev,
Ed., Consultants Bureau, New York, N. Y., 1967, p 147.
- **(363)** A. T. Filvaev. **S.** V. Karuachev, and S. F. Pal'guev in ref **362,** p **161.**
- **i364j S. V.** Kaipachev and A.T. Filyaev, *Elektrokhimiya,* **2,1330(1966);** *Sou. Electrochem,* **2, 1215 (1966);** *Z. Phys. Chem.* (Leipzig), **238, 284**
- (1968).
(365) E. B. Shultz, Jr., K. S. Vorres, L. G. Marianowski, and H. R.
Linden in ''Fuel Cells,'' Vol. 2, G. J. Young, Ed., Reinhold Publishing
Corp., New York, N. Y., 1963, p 24.
- **(366)** -J. Weissbart and R. Ruka in ref **365,** p **37.**
- **(367)** J. Besson, C. Deportes, and M. Kleitz, *Piles Combust.,* **87, 303 (1965).**
- **(368)** A. **B.** Hart and G. J. Womack, "Fuel Cells; Theory and Applica- tion," Chapman and Hall, London, **1967,** p **170.**
- **(369)** H. **A.** Liebhafsky and E. J. Cairns, "Fuel Cells and Fuel Batteries-A Guide to Their Research and Development," John Wiley and **Sons,** Inc., New York, N. Y., **1968,** p **555.**
- **(370)** M. V. Perfil'ev and **S.** F. Pal'guev in "Electrochemistry of Molten and Solid Electrolytes," Vol. *5,* A. N. Baraboshkin, Ed., Consultants Bureau, New York, N. Y., **1967,** p **149.**
- **(371)** C. Deportes, *Reo. Gen Elec.,* **76,50 (1967).**
- **(372)** 0. Antonsen, W. Baukal, and W. Fischer, *Brown Boueri Reo.,* **53, 21 (1966).**
- **(373) T.** Takahashi, K. Ito, and H. Iwahara, *Electrochim. Acta,* **12, 21 (1967).**

oxygen by Ag, ^{299, 317, 374} Cu, ²⁹⁴ PbO, ³⁷⁴ and PbO-SiO₂³⁷⁴ after changing the oxygen pressure above the melts have been followed. In studies of this nature where the liquid and gas phases are not in equilibrium, mixed potentials, discussed by Masson and Whiteway,³¹⁷ must be avoided. This does not appear to have been the case in one investigation.³⁷⁴ Also, the deoxidation of copper with magnesium^{301-303, 375} and iron or steel with silicon, manganese, aluminum, or titanium^{126, 128, 305, 375} can be monitored.

By continuously measuring the oxygen pressure in a gas phase, the rates of oxidation of Fe^{116,376} and Fe_zO,¹¹⁶ reduction of Cu0,1°5 Fez03,105 Fe304,116 Fez0,116 and **WOa,'05** and decarburization of Fe, $377,378$ Ni, 378 and Co^{378} have been determined. The oxidation of graphite by $CO₂$ has been studied by measuring oxygen pressure profiles in the vicinity of the reaction surface.³⁷⁸ Intermediate compounds which form during a chemical reaction are indicated by a temporary independence of the emf with time.I06 Once again, the major experimental difficulty with this technique is the elimination of mixed potentials.³⁷⁶ Schmalzried³⁷⁹ has discussed electrochemical methods to determine kinetic quantities with oxide electrolytes.

6. Other

By electrolyzing either $CO₂$ or $H₂O$ with an oxide electrolyte, O_2 can be generated at the anode³⁸⁰⁻³⁸² or, alternately, the electrolysis of H_2O can be used for the purpose of preparing **Hz** at the cathode. **383** Similarly, inert gases can be purified with respect to O_2 , ^{98, 384} the oxygen pressure in stationary or flowing gas mixtures can be markedly reduced,98 and oxidizable gases can be coulometrically titrated with O_2 , $384,385$ For a given experiment, the permissible applied voltage across the electrolyte will be limited by the gas composition, gas flow rate, temperature, and cell geometry. Voltages which lower the oxygen pressure at the cathode too much will result in the appearance of electronic conductivity in the electrolyte.

The electrode Pt, O_2 stabilized ZrO_2 behaves as a reversible and noncorrosive reference electrode in silicate melts at temperatures up to 1250° . 326, 386-388 Marincek³⁸⁹ used a $ZrO₂$ CaO solid solution as a nonconsumable anode during the electrolysis of aluminum from a cryolite melt. Vacancy interaction energies have been determined in $Fe_xO₁$ ¹¹⁷ NbO,¹¹⁷ Ti0,'17and VO,118but electronic conductivity in the electrolyte

- **(375)** B. Marincek, *Helu. Chim. Acta,* **50,988 (1967).**
- (376) **V. B. Tare and H. Schmalzried,** *Trans. Met. Soc. AIME***, 236, 444** (1966).

(1966). (377) S. G. Whiteway, **R. J.** W. Peters, W. D. Jamieson, and C. R. Masson, *Can. Met. Quart.,* **7,21 l(1968).**

(378) K. Goto, M. Kawakami, and M. Someno, *Trans. Met.* Soc. *AIME,* **245,293 (1969).**

- **(379)** H. Schmalzried, *Arch. Eisenhuettenw.,* **39,531 (1968).**
- **(380)** L. Elikan, D. H. Archer, and R. L. Zahradnik, *Chem. Eng. Progr., Symp. Ser.,* **62 (63), 29 (1966).**
- **(381)** H. W. Chandler and F. *Z.* Pollara, *ibid.,* **62 (63), 38 (1966).**
- **(382)** J. Weissbart and W. H. Smart, *NASA Contract Rep.,* **CR-680, 88** pp **(1967)** ; **J.** Weissbart, W. H. Smart, and T. Wydeven, *Aerosp. Med.,* **40, 136(1969).**
- **(383) D.** W. White, *Chem. Engr. News,* **46 (47), 48 (1968).**
- **(384)** R. Hartung and H.-H. Moebius, *2. Chem.,* **7,473 (1967).**
- **(385)** H.-H. Moebius, *2. Phys. Chem.* (Leipzig), **231,209 (1966).**
- **(386)** J. Besson, C. Deportes, and M. Darcy, C. *R. Acad. Sci., Purls,* **251, 1630 (1960);** C. Deportes and M. Darcy, *Silicates Znd.,* **26, 499 (1961).**

(387) J. Besson, C. Deportes, and P. Donneaud, C. *R. Acad. Sci., Paris,* **260,2497 (1965).**

- **(388) E.** Plumat, **F.** Toussaint, and M. Boffe, *J. Amer. Ceram.* Soc., **49, 551 (1966).**
- **(389)** B. Marincek, *Schweiz. Arch. Angew. Wiss. Tech.,* **33,395 (1967).**

⁽³⁵⁷⁾ A. T. Filyaev, S. F. Pal'guev, and S. V. Karpachev, Tr. Inst.
Elektrokhim., Akad. Nauk SSSR, Ural. Filial, 2, 199 (1961); Chem.
Abstr., 59, 3535 (1963).

⁽³⁷⁴⁾ K. Goto, M. Sasabe, and M. Someno, *Trans. Met. Soc. AIME,* 242, 1757 (1968).

probably interfered with the results for the last three. *Also,* the high electrical conductivity of stabilized- $ZrO₂$ ceramics enables them to be used as furnace elements.17, **390-392** They are stable in oxidizing atmospheres at temperatures in excess of 2500".

Several recent investigations further indicate the wide range of applicability of $ZrO₂$ -based electrolytes. Batteries have been constructed with anodes of Ni, Co, Fe, and Mn and a useful life of 3–5 min.³⁹³ Stabilized $ZrO₂$ has been considered as a possible electrode material in magnetohydrodynamic generators which produce an emf by the movement of a plasma in a magnetic field.^{198, 394-397} One electrode supplies electrons to the plasma by the oxidation of *02-* ions, and the other electrode removes them by the reverse process. Cells of the type $(-)$ *O*₂ at $T_1 | ZrO_2 + CaO$ or $Y_2 O_3 | O_2$ at $T_2 (+)$ where $T_1 > T_2$ have been studied.³⁹⁸⁻⁴⁰² The thermoelectric power (Seebeck coefficient) of these cells is about $-450 \mu V/deg$ in pure oxygen, **398, 899** decreases with decreasing oxygen pressure from 1 to 10⁻⁴ atm,^{398,400} and is approximately independent of temperature from **700** to 1400". **399-401** Finally, a partial separation of the l6O, **170,** and *180* isotopes has been effected on account of their different mobilities in a $ZrO₂-Y₂O₃$ electrolyte. **⁴⁰³**

It should be mentioned that some of the aforementioned studies were either partially or fully carried out with $ZrO₂-$ The emf's would only be expected to exhibit long-term stability below 850" andabove 1400" (section **1II.D). MgO electrolytes.218,223,226,** 236,259,301,309,324,326,334,386,387,388,390

Several investigators have discussed the application of Zr02-based electrolytes to thermodynamic and kinetic measurements. **404-408**

IV. Tho,-Based Electrolytes

Most of the research on the electrical properties of ThO₂based electrolytes has dealt with $ThO₂-Y₂O₃$ solid solutions. Consequently, this section **will** be subdivided by properties, rather than by systems.

- **(392) E. G. Wolff,** *Reo. Sci.Instrum.,* **40,544(1969).**
- **(393) D. P. Clark and R. E. Meredith,** *Electrochem. Technol.,* **5, 446 (1967).**
- **(394) M. Guillou, J. Millet, M. Asquiedge,** *N.* Busson, **M. Jacquin, S. Palous, M. Pithon, and A. Lecante,** *Rev. Hautes Temp. Refract.,* **4, 273 (1967).**
- **(395) R. E. W. Casselton and M. D. S. Watson,** *Sci. Ceram.,* **4, 349 (1968).**
- **(396) G. Johnson, E. Tuffy, and D. Balfour,** *Elec.* **MHD** *(Magneto- hydrodyn.), Proc. Symp.,* **5,2939 (1968).**
- **(397) M. Jacquin, M. Guillou, A. De Montardy, and J. M. Philippe,** *ibid.,* **5,2991 (1968).**
- **(398) W. Fischer, Z.** *Naturforsch.,* **22A,** *1575* **(1967).**

(399) R. J. Ruka, J. E. Bauerle, and L. Dykstra, *J. Electrochem. Soc.,* **115,497 (1968).**

- **(400) G. Stein, A. Lecante, M. Guillou, and J. Millet,** *C. R. Acad. Sci., Paris,* **267,1660(1968).**
- **(401)** *S.* **L. Fridman, S. F. Pal'guev,and V. N. Chebotin,** *Elektrokhirniya,* **5,357 (1969);** *SOC. Electrochem.,* **5, 325 (1969).**
- **(402) K. Goto, T. Ito, and M. Someno,** *Trans. Met. SOC. AIME,* **245, 1662 (1969).**
- **(403) H. S. Spacil and C. S. Tedmon, Jr.,** *Nature,* **222,662 (1969).**
- **(404) H. Schmalzried in ref** 116b, **p 97.**
- **(405) K. Goto and** *Y.* **Matsushita,** *J. Electrochem. SOC. Jap., Overseas Ed.,* **35, 1 (1967).**
- **(406) N. Birks,** *J. Shefield Univ. Met. SOC.,* **6,56 (1967).**
- **(407) B. C. H. Steele in ref 34, p 3.**
- **(408)** *Y.* **D. Tretyakov,** *Vestn. Mosk. Univ., Ser. ZI,* **23,88 (1968).**

A. PHASE RELATIONS

As ThOz already has the cubic fluorite structure, the addition of di- and trivalent metal oxides is made solely to introduce **a** significant number of anion vacancies. The solubilities of the alkaline earth oxides, Sc_2O_3 , Y_2O_3 , and the rare earth oxides in **Thoz** are presented in Table **XIV.** The alkaline earth oxides

Table XIV Solubilities of Di- and Trivalent Metal Oxides in ThO₂

Oxide	Temp, $\degree C$	Solubility, $\%$ MO or \dot{M}_2O_3	Ref
CaO	1700	10	409
	1800	>12	410
	1800	8	411
SrO	1800	4	411
BaO	1800	< 0.5	411
Sc ₂ O ₃	1750	~ 0.5	192, 195
Y_2O_3	1200	18	412
	1400	14	413
	2000	33	414
	1400	12	414
La ₂ O ₃	1300	35	415
	1400	32	413
	1500	32	185
	1950	39	416
	1200	20	416, 417
Pr_2O_3	1400	54	418
Nd_2O_3	1400	33	413
	1500	33	185
Sm ₂ O ₃	1400	43	413
Eu ₂ O ₃	1800	54	418
	1500	36	418, 419
	1200	22	419
$\rm{Gd_{2}O_{3}}$	1400	33	413
	2000	45	416
	800	19	416
$\rm Yb_{2}O_{3}$	1400	5	418, 419
	1800	10	416
	1000	3	416

are only moderately soluble and, therefore, phase **studies** which have indicated that 48% MgO⁴²⁰ and 50% CaO⁴²¹ are soluble at 1600° must be discounted. Very slight solubility of $Sc₂O₃$ is indicated, although none was detected in another study.⁴²² Nevertheless, Y_2O_3 and the rare earth oxides are

- **(410) C. E. Curtis and J. R. Johnson,** *ibid.,* **40,63 (1957).**
- **(411)** H.-H. **Moebius, H. Witzmann, and** W, **Witte,** *Z. Chem.,* **4, 152** (**1964).**
- **(412) F. Hund and R. Mezger, Z.** *Phys. Chem.* **(Leipzig), 201,268 (1952).**
- **(413) G. Brauer and H. Gradinger,** *2. Anorg. Allg. Chem.,* **276, 209** (**1 9 54).**
- **(414) E. C. Subbarao, P. H. Sutter, and J. Hrizo, J.** *Amer.* **Cerarn.** *SOC.,* **48,443 (1965).**
- **(415) F. Hund and W. Duerrwaechter, Z.** *Anorg.* **Allg.** *Chem.,* **265, 67 (1951).**
- **(416) A. M. Diness,** *Diss. Absrr.,* **29B, 1030 (1968); A. M. Diness and R. Roy, J.** *Mater. Sci.,* **4, 613 (1969).**
- **(417) A. M. Diness and R. Roy, Bull** *Amer. Ceram. SOC.,* **43,263 (1964).**
- **(418) K. A. Gingerich,** *U.* **S.** *At. Energy Comm.,* **TID-14808, 7 pp (1961).**
- **(419) K. A. Gingerich and G. Brauer,** *2. Anorg. Allg. Chem.,* **324, 48 (1963).**
- **(420) S. D. Mark, Jr.,J.** *Amer. Ceram. Soc.,* **42,208 (1959).**
- **(421) M. Hoch, H. S. Yoon, and A. Silberstein,** *Proc. Brit. Ceram. SOC.,* **8,247 (1967).**
- **(422)** W. **Trzebiatowskii and R. Horyn,** *2. Chem.,* **5, 347 (1965);** *Acad. Polon. Sci., Ser. Sci. Chim.,* **13,303 (1965).** *Bull.*

⁽³⁹⁰⁾ E. K. Keler and E. *N.* **Nikitin,** *Zh. Prikl. Khim.,* **32,1984(1959).**

⁽³⁹¹⁾ M. Perez y Jorba and R. Collongues, *Rev. Hautes Temp. Refract.,* **1,21 (1964).**

⁽⁴⁰⁹⁾ J. R. Johnson and C. E. Curtis, *J. Amer. Ceram. SOC.,* **37, 611** (**1954).**

quite soluble in $ThO₂$, although the solubility limits decrease quite drastically with decreasing temperature. The solubility is highest for the oxides from Pr_2O_3 to Gd_2O_3 , which could be predicted from a consideration of the ionic radii in Table **I.** Brauer and Gradinger⁴¹³ and Gingerich⁴¹⁸ have stated that a continuous transition from the fluorite to the closely related C-type rare earth oxide structure will only be possible if their lattice parameters differ by less than 2.25% (\sim 0.12 Å). Although this is the case for Pr_2O_3 and Nd_2O_3 , these oxides have the hexagonal A-type rare earth oxide structure which invalidates the rule. The cations of the oxides which are C-type around 1400° (Tb₂O₈ to Lu₂O₃ and Y₂O₃) are too small to exhibit complete miscibility with $ThO₂$.

For ThO₂ $-Y_2O_3$ solid solutions, pycnometrically measured densities of fired pellets have agreed with those calculated for the anion vacancy model.^{412, 414, 415, 423} Samples sintered in air or oxygen are brown, and the intensity of the color increases with increasing Y_2O_3 content.^{414,424,425} The color is bleachable at low oxygen pressures,424 and translucent pellets have resulted from vacuum sintering at 2000°.^{99, 115} The trapping of electron holes by Y **3+** ions leading to the formation of color centers might account for the color at high oxygen pressures.424 The anion vacancy model has also been confirmed for ThO₂- La_2O_3 , $ThO_2-Gd_2O_3$, and $ThO_2-Yb_2O_3$ solutions.⁴¹⁶

The following lattice parameters have been given for $ThO₂$ + 10% M20a solid solutions: **5.576,412 5.574,413** and **5.566 A414** for Y2O3, **5.613415** and **5.622** A **'I3** for La203, 5.598 A for Nd_2O_3 ,⁴¹³ 5.585 Å for Sm₂O₃,⁴¹³ and 5.584 Å for Eu₂O₃.⁴¹⁹

Solid electrolytes based on $ThO₂-ZrO₂$ solid solutions do not seem feasible since these oxides are almost immiscible below **2000°.428-428** Nevertheless, the presence of a di- or trivalent metal oxide may stabilize the cubic phase at lower temperatures. *29, ⁴³⁰*

B. ELECTRICAL CONDUCTIVITIES

The available conductivity data for $ThO₂-Y₂O₃$ electrolytes are shown in Table **XV.** Since most of the compositions were given as $\%$ YO_{1.5}, both $\%$ Y₂O₃ and $\%$ YO_{1.5} are reported. Unlike ZrO₂-based electrolytes, p-type conductivity appears at high oxygen pressures^{63,99,414,423-425} and is detectable above about 10^{-6} atm.^{99, 424, 425 Except where noted, all the measure-} ments recorded in Table **XV** were taken at oxygen pressures below 10-8 atm and, therefore, are ionic conductivities and activation energies for ionic conduction. Excluding two studies, $412,430$ all the oxides were sintered between 2000 and 2200°. Hund and Mezger⁴¹² sintered their samples at only **1500** ".

Ionic conductivity can be expressed as

$$
\sigma_i = [V_o^{\circ}] 2e \mu \tag{11}
$$

where the expression for the mobility μ is given in eq 3. For small defect concentrations, where the ionic mobility is es-

sentially independent of the number of vacancies, the ionic conductivity will vary directly as the Y_2O_3 content since $[V_0^{\circ}] = \frac{1}{2}[YO_{1.5}]$. This proportionality was verified to 5% Y_2O_3 , 424 but only to 0.5–1 $\%$ Y_2O_3 in another investigation. 425 Other results indicate that it is not obeyed above about **2** % Y_2O_3 ^{99,414} The conductivity reaches a maximum at about 8% Y₂O₃ or 3.7% anion vacancies.^{99,425} Lattice distortion, defect interactions, vacancy clustering, and vacancy ordering will restrict the ionic conductivity at high defect concentrations. An increase in ΔH in eq 3 with increasing Y₂O₃ content will reduce the mobility of the anions. Interestingly enough, Steele and Alcock⁹⁹ found that ΔH decreased up to 8% Y_2O_3 , while Lasker and Rapp⁴²⁵ indicated that a ThO₂ + 0.4% Y_2O_3 specimen had a higher activation energy than specimens containing $0.8-14\%$ Y_2O_3 . Evidently, either *a* or *G* in eq 3 must decrease with increasing Y_2O_3 content. A better understanding of the significance of *a,* G, and *AH* and the nature of concentrated solutions of defects are required to adequately explain these observations.

p-Type conductivity at higher oxygen pressures results from a dissolution of oxygen into the lattice according to eq **9.** The equilibrium constant for this reaction may be written as

$$
K = \frac{p^2}{P_{0_2}^{1/2}[V_0^*]} \tag{12}
$$

if the electron hole concentration *p* is low so that the holes do not mutually interact. If the mobility of the holes is independent of their concentration, then the p-type conductivity will vary as $P_{0₂}^{1/4}$. Deviations from this dependence could occur if all the vacancies were not doubly ionized, all the holes were not free to conduct, or excessive association between Y^{3+} ions and anion vacancies meant that [V₀] could not be considered constant in eq 12. However, $ThO₂-Y₂O₃$ solid solutions do follow the $P_{0₂}^{1/4}$ law.^{424,425,430a} From eq 12, the p-type conductivity at constant oxygen pressure should be proportional to $[V_0^{\dagger}]^{1/2}$. This behavior has been reasonably verified to 14 $\%$ Y_2O_3 , 425 although this implies that the activity coefficient for the anion vacancies is approximately independent of their concentration from 0 io **6.3%** anion vacancies. However, Bauerle⁴²⁴ indicated that the p-type conductivity was almost unaffected by composition from 0.5 to 5% Y₂O₃ and suggested that the electron holes may be trapped by Y^{3+} ions. This explanation appears inconsistent with the $P_{0a}^{1/4}$ dependence that he observed. The conflicting data of these two papers necessitate further research.

Despite the fact that both ionic and p-type conductivity increase with Y_2O_3 content, ionic transport numbers increase. **425** For instance, measurable p-type conductivity appeared above oxygen pressures of 10^{-12} , 10^{-8} , and 10^{-6} atm for ThO₂ containing 0, 0.8, and 8% Y₂O₃, respectively.⁴²⁵ Linear Arrhenius plots for oxygen pressures above **10-6** atm^{99, 115, 414, 423 indicate that the activation energies for ionic} and p-type conduction are approximately equal. They are about 25 kcal/mole.^{99,423} Deviations from the Arrhenius relationship were observed above **1100414** and **1200'.423** The high-temperature slopes were dependent on the thermal history of the sample.423 More work is required to clarify these discrepancies.

Conductivity data for ThO $_2$ -rare earth oxide systems are almost nonexistent. Hund⁴³¹ reported a conductivity of 3.2 \times

⁽⁴²³⁾ J. M. Winner, L. R. Bidwell, and N. M. Tallan, J. *Amer. Cerum. Soc.,* **50,198 (1967).**

⁽⁴²⁴⁾ J. E. Bauerle, *J. Chem.Phys,* **45,4162(1966).**

⁽⁴²⁵⁾ M. F. Lasker and R. A. Rapp, Z. *Physik. Chem.* **(Frankfurt am Main), 49,198 (1966).**

^{(426) 0.} Ruff, F. Ebert, and H. Woitinek, Z. *Anorg. Allg. Chem.,* **180, 252 (1929).**

⁽⁴²⁷⁾ P. Duwez and E. Loh, *J. Amer. Ceram. Soc.,* **40,321 (1957).**

⁽⁴²⁸⁾ F. A. Mumpton and R. Roy, *ibid.,* **43,234 (1960).**

⁽⁴²⁹⁾ C. E. Curtis, *ibid.*, 30, 180 (1947).

⁽⁴³⁰⁾ C. Kawashima, S. Saito, and 0. Fukunaga, *J. Ceram. Assoc. Jap.,* **71.49 (1963).**

⁽⁴³⁰a) H. Ullmann, *Z. Phys. Chem.* **(Leipzig), 237, 274 (1968).**

⁽⁴³¹⁾ F. Hund,Z. *Anorg. Allg. Chem.,* **274.105 (1953).**

 $\mathbf{I}(\mathbf{c}) = \mathbf{I}(\mathbf{c})$ (ohmore $\mathbf{I}(\mathbf{c}) = \mathbf{I}(\mathbf{c})$ and $\mathbf{I}(\mathbf{c}) = \mathbf{I}(\mathbf{c})$ **and** $\mathbf{I}(\mathbf{c}) = \mathbf{I}(\mathbf{c})$ **and** $\mathbf{I}(\mathbf{c}) = \mathbf{I}(\mathbf{c})$ **and** $\mathbf{I}(\mathbf{c}) = \mathbf{I}(\mathbf{c})$ **and** $\mathbf{I}(\mathbf{c}) = \mathbf$

4 Activation energies (kcal/mol) are in parentheses. **⁵** 12.4% $Y_2O_3/22\%$ YO_{1.5}. *⁶* 11.7% $Y_2O_3/21\%$ YO_{1.5}. *6* Measured in air and, therefore, values are for mixed p-type and ionic conductivity. ϵ Activation energy was derived from a log $\sigma T v s$. 1/T plot.

 10^{-3} ohm⁻¹ cm⁻¹ at 1000° in air for ThO₂ + 14% La₂O₃, while Steele and A lcock⁹⁹ stated that compositions containing 5 and 8% La₂O₃ have conductivities about 10% higher than the corresponding $ThO_2-Y_2O_3$ solutions. The $ThO_2-Nd_2O_3$ system might prove an interesting one to study because of the similarity of the radii of the Th **4+** and Nd3+ ions and the stability of these valence states.

The results available for $ThO₂$ -alkaline earth oxide electrolytes are summarized in Table XVI. For each system, the maxi-

Table XVI

Total Conductivities (ohm⁻¹ cm⁻¹ \times 10²) of ThO₂-Alkaline Earth **Oxide** Electrolytes **at 1000"**

Composition, $\%$ MO	Total conductivity ^b	Ref
5% CaO	0.075(25.4)	432
10% CaO	0.064(25.4)	432
5% CaO	0.047c	99
15% CaO	0.047 ^c	99
15% CaO	0.092(25.5)	115
5% CaO	0.049(20.8)	433
13% BeO	0.032(28.8)	434
13% MgO	0.10(25.4)	434
15% SrO	0.14(18.4)	434
15% BaO	0.44(17.3)	434

⁴ Activation energies (kcal/mol) are in parentheses. ^b Measured in air. \cdot Measured at $P_{0_2} = 10^{-15}$ atm.

mum conductivities are shown. The conductivities of $ThO₂$ -CaO electrolytes are one order of magnitude lower than those of *ThOz-Yz03* electrolytes, although their activation energies are almost identical. Defect interactions between $Ca²⁺$ ions and anion vacancies will be relatively strong (section 1I.J). Wachtman436 accounted for internal friction and dielectric loss peaks in ThO₂ + 1.5 % CaO with a model whereby the Ca²⁺ ions are associated with anion vacancies. He suggested that the activation energy for ionic conduction may include the energy required to move a vacancy neighboring a $Ca²⁺$ ion, which he found to be 21.4 kcal/mol, and the energy required to separate the defect pair. In the $ThO₂-CaO$ system, the maximum conductivity seems to occur at about *5* % CaO, but remains almost constant from 5 to 15% CaO.^{99, 432, 433} It might reasonably be expected at a lower vacancy concentration than in the ThO₂-Y₂O₃ system because of the stronger defect interactions, *i.e.,* **<7-8** % CaO. Above *5* % CaO, the composition of the solid solution phase may not have changed since the solubility limit may have been surpassed. From Table XIV, about 10% CaO dissolves at 1800 $^{\circ}$ and probably less at lower temperatures. Indeed, Ullmann⁴³³ has shown that, above 1200 $^{\circ}$, the conductivity was independent of composition from 0 to *30z* CaO, indicating that the solid solutions were decomposing. More data are needed concerning the stability of $ThO₂$ CaO electrolytes.

Unfortunately, the data for the other $ThO₂$ -alkaline earth oxide systems⁴³⁴ must be treated with much reservation. The results are entirely inconsistent with phase study work. **⁴¹¹** Maximum conductivities should be found at much lower alkaline earth oxide concentrations and, based on the ionic radii involved, should be lower than those found in the $ThO₂-CaO$ system. The conductivity of $ThO₂ + 15\%$ BaO is unreasonably high. In the case of additions of BeO, MgO, and BaO, the conductivities in Table XVI must have resulted from extrinsic electronic conduction.

A comparison of Tables IV, VIII, XV, and XVI indicates that $ZrO₂$ -based electrolytes have conductivities which are one to two orders of magnitude higher than the corresponding ThO₂-based electrolytes. In the fluorite lattice, the anions have larger gaps between the cations through which to move when the cations are small. However, since the gap sizes are 90 and 89% as large as the anions for ZrO_2 and ThO_2 , respectively, ¹⁸⁵ other factors must also be important.

C. TRANSPORT PROPERTIES

In this section, the major advantage of ThO₂-based electrolytes over ZrO₂-based ones will be discussed, this being their greater stability under highly reducing conditions. This property is particularly important at high temperatures (1200-1600°) where n-type conductivity can seriously impair the performance of ZrOz-based electrolytes.

n-Type conductivity arises from a loss of oxygen from the lattice. Excess electrons must now be present to maintain charge neutrality. The marked stability of the Th⁴⁺, Y³⁺, La³⁺, and Ca²⁺ ions helps the crystals resist this loss. Below 10^{-6} atm, the conductivity of **ThO₂-Y₂O₃** electrolytes has been found independent of oxygen pressure down to 10^{-15} , 99, 424 10--19,423 and **426** atm at 1000". Markin, Bones, and Wheeler¹¹⁰ mentioned that measurable electronic conduction

⁽⁴³²⁾ *2.* **S. Volchenkova and S. F. Pal'guev in ref 27, p 104.**

⁽⁴³³⁾ H. Ullmann. *2. Chem.,* **9,39 (1969).**

⁽⁴³⁴⁾ *2.* **S. Volchenkova and S. F. Pal'guev in ref 51, p 53.**

⁽⁴³⁵⁾ J.B. Wachtman, *Jr..Phys. Rev.,* **131,517(1963).**

did not even result from placing thorium pellets on both sides of the electrolyte and flushing with dry hydrogen. Patterson, Bogren, and Rapp⁶³ estimated that $t_i > 0.99$ to at least 10^{-34} atm of oxygen at 1000° from the results of dc polarization experiments.

p-Type conductivity, proportional to $P_{0a}^{1/4}$ for both ThO_{2} Y_2O_3 ^{424, 425, 430a} and ThO₂-CaO⁵ solutions, occurs in conjunction with ionic conductivity at high oxygen pressures. About a 50 $\%$ variation in conductivity between 1 and 10⁻²² atm at 870° was noted for ThO₂-La₂O₃ electrolytes.⁸⁵ Recently, Ullmann⁹⁰ determined the oxygen permeability of ThO₂ + 11 $\%$ Y₂O₃ in air. Transport proceeds *cia* the unidirectional migration of *02-* ions and electron holes and is controlled by the mobility of the *02-* ions. The activation energy for permeability of 25.4 kcal/mole is in excellent agreement with the activation energies for ionic conduction in Table XV.

Transport numbers at high oxygen pressures can be determined by emf measurements. An average ionic transport number \tilde{t}_i can be calculated using eq 1. Providing that the oxygen pressures P_{0_2} and P_{0_2} at the electrodes are not too different, \bar{t}_i will be approximately equal to t_i at \bar{P}_{0i} where

$$
\log \overline{P}_{0_2} = \frac{\log P_{0_2}{}' + \log P_{0_2}{}''}{2} \tag{13}
$$

They will be exactly equal if t_i varies linearly with log P_{0i} (eq 4). Such a variation is roughly approximated for values of *ti* between **0.2** and *0.8* (eq 5). From results of emf measurements with gaseous electrodes at 1000°, $\vec{t}_i = 0.89$ (15 $\%$ CaO),⁹² 0.87 (15% La₂O₃),⁴³⁶ and 0.73 (15% Nd₂O₃)⁴³⁶ at $\bar{P}_{0_2} = 10^{-1}$ atm, 0.70 $(7\% \text{ Y}_2\text{O}_3)$ at $\overline{P}_{\text{O}_2} = 10^{-0.5}$ atm, ⁴²³ and 0.63 (3) Y_2O_3) at $\bar{P}_{O_2} = 10^{-0.3}$ atm.⁴¹⁴ Additions to ThO₂ are in parentheses. From conductivity measurements, $t_1 = 0.91$ and 0.65 at oxygen pressures of 10^{-2} and 1 atm, respectively, for $ThO₂ + 7\% Y₂O₃$.⁴²³ Considering the experimental difficulties associated with separating the gas streams on opposite sides of the electrolyte pellets for the emf measurements, the agreement is quite reasonable. Wimmer, Bidwell, and Tallan⁴²³ found that the transport numbers are approximately independent of temperature from 900 to 1500° in agreement with the similarity of the activation energies for ionic and p-type conduction. Ionic transport numbers have been shown to increase somewhat with temperature from 650 to 1000° ,⁹² 1000 to 1400", **414** and 400 to 1000°.430* Concentration polarization, resulting from open-circuit oxygen transfer through the electrolyte, might lower the emf. This polarization will be more detrimental at low temperatures. Finally, ionic transport numbers increase with Y_2O_3 content from 0 to 3,414 0 to 5,⁴²⁴ and 0 to 8% Y_2O_3 .⁴²⁵

Transport numbers at intermediate oxygen pressures can be calculated from the results of emf measurements with metalmetal oxide electrodes. Galvanic cells incorporating ThO₂based electrolytes and electrodes of Ni-NiO and Cu- $Cu₂O₂^{99, 115, 291, 423, 425}$ Fe-Fe_xO and Cu-Cu₂O₂⁹² and Fe-Fe_zO and Ni-NiO^{99, 423} have been constructed. At 1000°, these cells impose average oxygen pressures (eq 13) of $10^{-8.8}$, $10^{-10.5}$, and $10^{-12.6}$ atm, respectively.²²⁸ For the Ni-NiO, Cu-Cu₂O cell, readings were $3-5\%$ too low with electrolytes containing either 0.5% Y₂O₃, 14% Y₂O₃, or 5% CaO.⁹⁹ The deviations were greater if the electrolyte had been previously

(436) A. D. Neuimin and S. F. Pal'guev, *Silikaty Okisly Khim. Vys.*
Femp., Akad. Nauk SSSR, Inst. Khim. Silikatov, Vses. Khim. Obshch.
im D.I. Mendeleeva, 253 (1963); Chem. Abstr., 62, 15536 (1965).

heated to 1450° in air or oxygen.¹¹⁵ For this cell, deviations were also observed at 800-1100^{°425} and $\tilde{t}_i \ge 0.995$ at 900[°].⁴²³ For the Fe-Fe_zO, Cu-Cu₂O cell, $t_1 = 0.995$ at 1000°.⁹² Lastly, for the Fe-Fe_zO, Ni-NiO cell, theoretical emf's were obtained at 1000°,⁹⁹ although small deviations and unsteady readings over a period of several days have been reported. **423 In** general, these measurements do not yield accurate transference **num**over a period of several days have been reported.⁴²³ In general, these measurements do not yield accurate transference numbers when $t_i \sim 1$. An electronic contribution of 0.5 $\%$ only amounts to a difference of 1 mV in **200** and, in most experiments, the emf's are only reproducible to ± 1 mV. For example, the deviations tabulated by Lasker and Rapp⁴²⁵ seem comparable between cells imposing average oxygen pressures of $10^{-8.3}$ and $10^{-11.2}$ atm.

Nevertheless, the above results do illustrate a very important point. Although conductivity measurements are too insensitive to detect p-type conductivity below about 10^{-6} atm of oxygen, accurate emf measurements require one or both electrodes to be at much lower oxygen potentials. For $t_i = 0.65$ at $P_{0i} = 1$ atm, ⁴²³ $t_i > 0.999$ only when $P_{0i} < 10^{-11}$ atm, assuming that the p-type conductivity obeys the $P_{0₂}^{1/4}$ law. Consequently, the electrodes should impose an average oxygen pressure on the electrolyte no greater than 10^{-11} atm. Ullmann^{430a} found that, for the cell H_2 , $H_2O|ThO_2 + 11\%$ Y_2O_3 Ar, O_2 which imposed oxygen pressures of 10⁻¹⁸ and 10^{-3} atm at 1000 $^{\circ}$ at the anode and cathode, respectively, $t_1 > 0.999$.

Successful emf studies at low oxygen potentials have indirectly confirmed the ionic behavior of $ThO₂$ -based electrolytes. The systems which have been investigated are listed in Table XVII. The oxygen potentials were either taken directly from the respective papers or calculated. loo **In** several investigations, ^{110, 114, 423, 439- 441} the thermodynamic data derived from the emf measurements agreed to within ± 500 $\text{cal}/\frac{1}{2}\text{O}_2$ of gas equilibrium or calorimetric data. Excluding one paper, ⁴⁴³ there is a scatter of about 15 mV at 1000° among the results for the Nb-NbO, Fe-Fe,O cell. Although the free energy data for NbO given by Worrell⁴³⁹ differed by 2 kcal from thermal data, his results for Ta_2O_5 using a Nb-NbO reference electrode supported their accuracy. Also, Yuill and Cater291 obtained consistent results using Worrell's data for their $Ta-Ta_2O_5$ and $Nb-NbO$ reference electrodes. The cells shown in Table XVII conclusively indicate that the level of electronic conductivity in ThO₂-based electrolytes is extremely low at an oxygen pressure of 10^{-25} atm at 1000°. Usually, the emf's were steady and reproducible and the electrodes were often shown to be reversible.^{99, 291, 489, 440} Most of the scatter for the Nb-NbO, Fe-Fe,O cell and also for the Nb-NbO, NbO-NbO₂ cell^{99, 439} can be attributed to interference from the cell atmosphere. Either vacuum degassing, carefully purified inert gases, or reactive metals to remove oxygen are essential for successful operation of galvanic cells at **low** oxygen potentials.99,110,116, 291,489

Electronic conductivity has been observed when ThO₂based electrolytes contacted Mn-MnO,⁴⁴⁰ Ta-Ta₂O₅,⁴⁴² and

⁽⁴³⁷⁾ C. B. Alcock, S. Zador, and B. C. H. Steele, Proc. Brit. Ceram: Soc., 8, 231 (1967); S. Zador in ref 34, p 145.

⁽⁴³⁸⁾ F. A. Kuznetsov, V. I. Belyi, T. N. Rezukhina, and *Y.* **I. Gerasi-mov, Dokl. Akad. Nauk** *SSSR,* **139,1405 (1961); Dokl.** *Phys.* **Chem., 139, 642 (1961).**

⁽⁴³⁹⁾ W.L.Worrellinref116b,p 131.

⁽⁴⁴⁰⁾ C. B. Alcock and S. Zador, Electrochim. Acta, 12,673 (1967).

⁽⁴⁴¹⁾ S. Ignatowicz and M. W. Davies, *J. Less-Common Metals*, 15, 100 **(1968).**

⁽⁴⁴²⁾ S. R. Levine **and M. Kolodney,** *J.* **Electrochem.** *Soc.,* **116, 1420** (**1969).**

Table XVIl

Emf Studies at Low Oxygen Potentials Using ThOz-Based Electrolytes

ture range was covered as that shown for other cells in the respective papers. a Oxygen potential for the largest value of x which was studied. **b** Several electrolyte compositions were used. *e* Assuming the same tempera-

Nb-NbO^{99, 115} electrodes. It could be virtually eliminated by increasing the thickness^{99, 115, 440} or changing the composition⁹⁹ of the electrolyte to increase its resistance. However, these changes produced **no** effect in one case. **⁴⁴²**

Markin and Rand⁴⁴⁶ appear to have shown that $ThO₂$ -based electrolytes are useful at oxygen pressures of 10^{-26} atm at 1000". Similar data were obtained from both reference electrodes, and they agreed with an independent phase diagram study. Attempts to measure the emf of the cell Si, $SiO_2|ThO_2$ -La₂O₃ Fe, Fe_zO (P₀₂ for Si-SiO₂ is 10⁻²⁸ atm at 1000[°]) have been unsuccessful. 449, **450** However, these failures cannot definitely be attributed to electronic conductivity in the electrolyte. Worrell⁴⁴⁸ observed a small but steady drift in the emf of a cell having a $Zr-ZrO₂$ electrode but, again, the reason for this could not be unequivocally determined. Two interesting lowtemperature investigations should be mentioned. Barbi⁴⁴⁷ obtained free-energy data for Al_2O_3 by first cathodically reducing the aluminum surface-oxide layer and then plotting emf *US.* time. After equilibrium was rapidly restored at the reierence electrode-electrolyte interface, the emf decayed

-
- (448) W. L. Worrell in ref 116b, p 187.

Russ. J. Phys. Chem., 42,418 (1968). (450) *Y.* I. Gerasimov in ref 116b, **p** 184.

slowly due to a decrease in the aluminum activity. This portion of the curve was extrapolated to zero time to yield the cell emf. The $Al-Al_2O_8$ electrode will impose an oxygen potential of **10-52** atm at 650' **on** the electrolyte. His results were in reasonable agreement with the literature. **loo** Kolodney, Minushkin, and Steinmetz⁴⁵¹ measured the oxygen content in liquid sodium at 316° with a ThO₂ + 17% Y_2O_3 electrolyte and a Cu-Cu₂O reference electrode. An oxygen content of 10 ppm by weight represents an oxygen potential of 10^{-61} atm at this temperature. The emf's obeyed the Nernst equation but were $2-3\%$ too low. Extrinsic electronic conduction in the electrolyte might be important at low temperatures.

Several quantitative evaluations of the range of applicability of $ThO₂$ -based electrolytes have been attempted. Since electronic conduction was apparent in the presence **of** Nb-NbO but essentially absent for Mn-MnO, Steele and Alcock⁹⁹ estimated that $t_i > 0.99$ at 1000° above 10^{-24,5} atm of oxygen. Therefore, from eq 5, $P_{\theta} \sim 10^{-33}$ atm at 1000°. This value agrees with the analysis proposed by Vecher and Vecher.⁴⁵² These authors assumed that the ratios of P_{θ} to the dissociation pressure for both ZrO_2 and Th O_2 were equal. For ZrO_2 , the values for P_{θ} in eq 7 were used. Practically identical results were obtained by using eq **1, 4,** and *5* in conjunction with the discrepancy between Barbi's results⁴⁴⁷ and literature data¹⁰⁰ for **AZOa.** This agreement must be considered fortuitous since the

⁽⁴⁴³⁾ V. **I.** Lavrent'ev, *Y.* I. Gerasimov, and T. N. Rezukhina, *Dokl. Akad. Nauk SSSR,* 136,1372(1961).

⁽⁴⁴⁴⁾ V. N. Drobyshev and T. N. Rezukhina, *Zh. Fiz. Khim.,* 39, 151 (1965); *Russ. J. Phys. Chem.,* 39,75 (1965).

⁽⁴⁴⁵⁾ V. N. Drobyshev and T. N. Rezukhina, *Zzv. Akad. Nauk SSSR, Metal.,* 156(1966); *Russ. Mer.,* 85(1966). (446) T. L. Markin and M. H. Rand inref 116b, **p** 145.

⁽⁴⁴⁷⁾ G. B. Barbi, *Trans. Faraday Soc.,* 62,1589 (1966).

⁽⁴⁴⁹⁾ **A. A.** Vecher, R. **A.** Vecher, V. **A.** Geiderikh, and **I. A.** Vasil'eva, *Zh. Fiz. Khim.,* 39,2080(1965); *Russ. J.Phys. Chem.,* 39, lllO(1965).

____ (451) M. Kolodney, B. Minushkin, and H. Steinmetz, *Electrochem. Technol.,* 3,244(1965).

⁽⁴⁵²⁾ **A. A.** Vecher and D. V. Vecher, *Zh. Fiz. Khim.,* 42, 799 (1968);

magnitudes of this discrepancy and the error limits given for $Al_2O_3^{100}$ are comparable. From a comparison between the measured and theoretical emf's for the cell Ta, $Ta_2O_5|ThO_2 Y_2O_3$ Fe, Fe_rO, Levine and Kolodney⁴⁴² calculated that $P_\theta =$ $10^{-28.6}$ atm at 1027° . This value seems inconsistently high. Similarly, the previously mentioned estimated result that *ti* > 0.99 to at least 10^{-34} atm of oxygen at $1000^{\circ 63}$ appears too low. **A** direct determination of *Pe* was effected recently by Tretyakov and Muan.¹²⁰ Oxygen was coulometrically titrated out of the cathode chamber until the cell voltage reached a plateau. Inserting the voltage for several temperatures into eq 6 yielded the equation

$$
\log P_{\Theta} = -\frac{56.3 \times 10^3}{T} + 13.4 \tag{14}
$$

from 1000 to 1400°K. At 1000°, $P_{\theta} = 10^{-31}$ atm. For $\bar{t}_i \ge 0.99$

$$
\log P_{01}' \geqslant -\frac{56.3 \times 10^3}{T} + 17.4 \tag{15}
$$

where, again, P_{0_2} ' is the oxygen pressure at the anode. Equation 15 applies to an air or oxygen reference electrode which cannot be used in contact with ThO₂. For a reference electrode exerting a lower oxygen potential, the minimum permissible pressures in eq 15 will be slightly higher. However, cells of the type Mn, $MnO|ThO₂-Y₂O₃|ZrO₂-CaO|air$ can be constructed to eliminate the problem of p-type conduction in the ThO_2 -Y₂O₃ electrolyte.¹²⁰

A comparison of eq 7,8,14, and 15 and estimated values of P_{Θ} for ThO₂-based electrolytes^{99, 452} indicates that the latter are useful to oxygen pressures three to five orders of magnitude lower than ZrO_2 -based electrolytes. Below 10^{-25} atm of oxygen at lOOO", this might be an academic question only. Experimental difficulties will be the determining factor.

The behavior of ThO₂-based electrolytes above 1200° has been relatively unexplored. Conductivity measurements **42s** and emf measurements with the cell Mn, MnO ThO₂-Y₂O₃ air¹¹⁴ have indicated that transport numbers at high oxygen pressures are independent of temperature to 1500-1600". Wimmer, Bidwell, and Tallan⁴²³ observed n-type conductivity using blocking-electrode polarization techniques and suggested that the condition that $t_i > 0.99$ might be impossible to achieve above 1400" at any oxygen pressure. Undoubtedly,either interference from gas-electrode reactions or, alternately, easily reduced impurities in the electrolyte influenced this conclusion. The p-n transition occurs at oxygen pressures of 10^{-12} and 10^{-8} atm at temperatures of 1400 and 1600°, respectively.⁴²⁸ This means that the activation energy for n-type conduction is greater than that for p-type conduction and, consequently, ionic transport numbers decrease with increasing temperature at low oxygen pressures. As yet, the critical oxygen pressures at which n-type conductivity becomes significant are unknown. Baker and West⁸⁷ stated that electronic conductivity interfered with the performance of a $ThO₂-Y₂O₃$ electrolyte in contact with H_2-H_2O electrodes around 1600°. Schwerdtfeger¹¹⁴ obtained accurate free energy data for MnO up to 1550". At this temperature, the Mn-MnO electrode has an equilibrium oxygen pressure of **10-14** atm. Recently, it was found that ThOz-*YzOa* electrolytes are almost solely ionic conductors in contact with the Si-SiO₂ electrode at 1600°, *i.e.*, at an oxygen pressure of 10^{-16} atm.¹²⁸ Satisfactory results were obtained for measurements of the oxygen contents in silicon-rich liquid iron down to less than 1 ppm oxygen by weight, *i.e.*, $\lt 3 \times 10^{-15}$ atm.¹²⁸

In summary, the greater stability of $ThO₂$ -based electrolytes compared to ZrOz-based electrolytes makes them important in applications involving low oxygen potentials. *Also,* their lower conductivities will reduce the open-circuit oxygen transfer between the electrodes. n-Type conductivity can be markedly increased by the presence of impurities which could introduce energy levels near the conduction band. The use of very pure materials to fabricate the electrolytes cannot be overemphasized.

D. APPLICATIONS

The thermodynamic properties of the systems listed in Table XVIII have been investigated with ThO₂-based electrolytes. Additionl emf data are available for the Ni-NiO, $Cu-Cu₂O²⁹¹$ and Fe-Fe_zO, Fe_zO-Fe₃O₄⁴⁴³ cells. Several of the studies dealing with nonstoichiometric oxides used the method of coulometric titration to control composition. **437,** 474 **475** Rezukhina and his coworkers have contributed all the available data on ternary compounds using $ThO_2-La_2O_3$ electrolytes and Fe-Fe_zO reference electrodes, although Mo-MoO₂⁴⁵⁷ and Nb-NbO **470** were also used. Measurements were occasionally extended as high as 1300° .^{454, 462, 465} It is interesting to note that if the data given for $CaTiO₃⁴⁷⁰$ are correct, and they agree reasonably well with calorimetric data, 100 then ThO₂ + 15% La₂O₃ exhibits predominantly ionic conduction at an oxygen pressure of 10^{-30} atm at 1000° . Attempts to obtain some information about TiO_{0.5} by coulometric titration of titanium were unsuccessful, perhaps due to the slow diffusion of oxygen in titanium. **⁴⁷⁰**

(462) V. A. Levitskii, M. Y. Frenkel, and T. N. Rezukhina, *Elekfro- khimiya,* **1,1371 (1965);** *Sov. Electrochem,* **1,1229 (1965).**

(464) T. N. Rezukhina and V. A. Levitskii, *Zh. Fiz. Khim.,* **37, 2357 (1963);** *Russ. J. Phys. Chem.,* **37,1277 (1963).**

(465) T. N. Rezukhina, V. A. Levitskii, and M. Y. Frenkel, Zzu. *Akad. Nauk SSSR, Neorg. Mater.,* **2,325 (1966);** *Znorg. Mater.,* **2,279 (1966).**

466) T. N. Rezukhina, V. A. Levitskii, and B. A. Istomin, *Elektro-* I, *himiya,* **1,467(1965);** *Sov.EIectrochem.,* **1,404(1965).**

(467) V. A. Levitskii and T. N. Rezukhina, Izv. Akad. Nauk SSR, Neorg. *Mater.*, **2, 145 (1966):** *Inorg. Mater.*, **2**, 122 (1966).

(468) *T.* N. **Rezukhina, V, A. Levitskii, and P. Ozhegov,** *Zh. Fiz. Khim.,* **31.687(1963):** *Russ.J.Phvs.* **Chem..37.358(1963).**

*<i>(***469) A. N. Golubenko, O. A. Ustinov, and T. N. Rezukhina,** *Zh. Fiz. Khim.***, 39, 1164(1965);** *Russ. J. Phys. Chem.***, 39,616(1965).**

(470) A. N. Golubenko and T. N. Rezukhina, *Zh. Fiz. Khim.,* **38, 2920 (1964);** *Russ. J.Phys. Chem.,* **38,1587(1964). (471) A. Kubik and C. B. Alcock in ref 34, p 43.**

(473) T. L. Markin and E. J. McIver in "Plutonium 1965," Proceedings of the 3rd International Conference on Plutonium, London, 1965, p 845. 474) A. N. Golubenko and T. N. Rezukhina, *Izv. Akad. Nauk SSSR, fv eorg. Mater.,* **3,101 (1967).**

(475) V. G. Dneprova, T. N. Rezukhina, and Y. I. Gerasimov, *Zh. Fiz. Khim.,* **42,1532 (1968);** *Russ. J. Phys. Chem.,* **42,802 (1968).**

(476) H. Peters and G. Mann, *2. Elektrochem,* **63,244 (1959).**

⁽⁴⁵³⁾ H. Peters and G. Mann, *Naturwissenschaften,* **45,209 (1958).**

⁽⁴⁵⁴⁾ V. A. Levitskii, T. N. Rezukhina, and V. G. Dneprova, *Elektro-khimiya,* **1,933 (1965); Sou.** *Electrochem.,* **1,833 (1965).**

⁽⁴⁵⁵⁾ T. N. Belford and C. B. Alcock, *Trans. Faraday* **Soc., 61, 443 (1965).**

⁽⁴⁵⁶⁾ V. A. Levitskii, T. N. Rezukhina, and A. S. Guzei, *Elektrokhimiya,* **1,237(1965); Sou.** *Electrochem.,* **1,200(1965).**

⁽⁴⁵⁷⁾ V. N. Drobyshev, T. N. Rezukhina, and L. A. Tarasova, *Zh. Fiz. Khim.,* **39,141 (1965);** *Russ. J. Phys. Chem.,* **39,70 (1965).**

⁽⁴⁵⁸⁾ T. N. Rezukhina and *2.* **V. Proshina,** *Zh. Fiz. Khim.,* **36, 637 (1962);** *Russ. J. Phys. Chem.,* **36,333 (1962).**

⁽⁴⁵⁹⁾ T. N. Rezukhina and Y. G. Golovanova, Zzu. *Akad. Nauk SSSR, Neora. Mater.,* **3,867 (1967).**

⁽⁴⁶⁰⁾⁻E. J. McIver and S. S. Teale, U.K. A.E.A. Report AERE-R4942 (27 .- **DO).** .. ,. **1965.**

⁽⁴⁶¹⁾ S. Seetharaman and K. P. Abraham, *Inst. Mining Met. Trans.*, *77C,* 209 (1968).

⁽⁴⁶³⁾ T. N. Rezukhina and V. A. Levitskii, Zzv. *Akad. Nauk SSSR, Neorg. Mater.,* **3,138 (1967).**

⁽⁴⁷²⁾ A. Kubik and C. B. Alcock, *MetalSci. J.,* **1,19 (1967).**

Table XVlIl

Thermodynamic **Property Measurements Using ThOa-Based** Solid **Electrolytes**

^{*a*} Contain excess Al and O in stoichiometric amounts.^{*b*} The intermetallic compound Co₃W was considered. *^{<i>e*} Claimed that this phase existed until $x = 0.46$ which is rather unlikely.

Thoria-based electrolytes have been used to measure the oxygen pressure in gas mixtures, 827 the oxygen activity in liquid Pb,²³⁶ Sn,⁴⁵⁵ Fe,¹²⁸ and Na,⁴⁵¹ as a reference electrode in KC1-NaCl-Na20 melts, **477** as elements in oxide resistor furnaces, $478-480$ and in thermal cells with oxygen electrodes.^{402, 481} Low conductivities and the presence of p-type conductivity at high oxygen pressures preclude their use in fuel cells.

The choice of an electrolyte for a given application depends, in part, on its chemical stability toward the electrodes. For instance, ThO₂ and Al react to form ThAl₃,⁴⁴⁷ and ThO₂-Y₂O₃ parently resulting in the formation of YFeO₃.⁴³⁹ The latter problem has been overcome by simply cleaning the surface of the Fe-Fe_{2}O electrodes between runs⁴⁴⁶ and was not experienced by Kubik and Alcock⁴⁷¹ who prepared very dense electrolytes interact with Fe-Fe_xO mixtures, 425, 439, 446 apelectrolytes by an oxalate coprecipitation method. Electrolytes with low permeabilities are also essential when dealing with condensed phases having high vapor pressures⁴⁴⁰ or with gas electrodes. 288, 458, 476 In general, ThO₂-based electrolytes are chemically quite inert. They exhibit excellent corrosion resistance in molten sodium⁴⁵¹ and strongly alkaline melts.⁴⁷⁷ Despite their low conductivities, measurements can be extended to temperatures as low as 500° ^{115, 236, 327, 447, 455} and even **316°.451**

Several other oxide systems provide alternative solid electrolytes to those based on $ZrO₂$ and ThO₂. These will now be discussed.

V. Ce02-Based Elecfro/yfes

A. PHASE RELATIONS

Analogous to $ThO₂$, CeO₂ has the cubic fluorite structure, but $Ce⁴⁺$ ions are easily reduced to the $+3$ valence state at low oxygen pressures. The solubilities of the alkaline earth oxides, Sc_2O_3 , Y_2O_3 , and the rare earth oxides in CeO_2 are presented in Table XIX. Direct reaction between $CeO₂$ and SrO results in the formation of SrCeO₃ at 1100-1200° followed by its reac-

⁽⁴⁷⁷⁾ B. Eichler, D. Naumann, and H. Ullmann, *Z. Phw. Chem.* (Leipzig), **236, 372(1967).**

⁽⁴⁷⁸⁾ R. **F.** Geller, *J. Res. Nut. Bur. Stand.,* **21,555 (1941).**

⁽⁴⁷⁹⁾ S. M. Lang and R. F. Geller, *J. Amer. Ceram. SOC.,* **34,193 (1951). (480) E.** Rothwel1,J. *Sci.Znstrum.,* **38,191 (1961).**

⁽⁴⁸¹⁾ J. E. Bauerle, R. J. Ruka, and J. Hrizo in "Transport Studies of
Defect Structure Inorganic Compounds," R. R. Heikes, Ed., U. S.
Government Research and Development Report AD464733, 1965, p 7.

Table XIX

Solubilities of Di- and Trivalent Metal Oxides in CeOz

tion with excess $CeO₂$ at 1500-1600 $^{\circ}$ to form a cubic solid solution.⁴⁹² In another study, the compound $Sr₂CeO₄$ was found between 1100 and 1430°.493 Solid solutions are not formed between $CeO₂$ and BaO.⁴⁸³ The solubility limits of Y_2O_3 and the rare earth oxides are in considerable disagreement. Bauer and Gradinger⁴¹⁸ found complete miscibility in many instances, whereas miscibility gaps between the fluorite and C-type rare earth oxide structures were observed in all the systems in more recent investigations. **486, 488** The attainment of equilibrium was emphasized in these latter studies. Identical results were obtained at 1600" for samples prepared by either coprecipitation or direct mixing and phase boundaries could be traced by heating and cooling between 1500 and 1700". Therefore, these result^^^^^ **48*** should be the more reliable. **A** degree of long-range ordering takes place at relatively low defect concentrations in these solid solutions. For instance, in the $CeO₂-Y₂O₃$ system, X-ray diffraction lines characteristic of the C-type rare earth oxide structure have been evident at

(487) E. Zintl and U. Croatto, *Z. Anorg. Allg. Chem., 242,79 (1939).*

- *(489)* T. Takahashi and H. Iwahara, *Denki Kagaku, 34,254 (1966).*
- *(490)* J.D. McCullough, *J. Amer. Chem. SOC., 72,1386(1950).*
- *(491)* M-Brunoand A. Mayer, *Ric. Sci.,28,1168(1958).*
- *(492)* E. K. Keler and N. A. Godina, *Zh. Neorg. Khim., 2, 209 (1957); Russ. J.Inorg. Chem., 2,319 (1957).*
- *(493)* A. Cocco, *Unio. Studi Triesfe, Fac. Ing., Isf. Chim.,* **Appl.** No. *22, 15 pp(1966); Chem. Abstr.,67,37103 (1967).*

8, 485 11, **486** and 18 % Y203. **494** Ordering is favored by the smaller trivalent metal cations. $485, 494$

The anion vacancy model for the solid solutions has been confirmed by both density^{483, 487} and X-ray intensity^{487, 490} studies. The following lattice parameters have been given for $CeO₂ + 10\% M₂O₃$ solutions: 5.408,⁴⁸⁵ 5.405,^{413,486} and 5.404 Å 495 for Y_2O_3 , 5.451 Å for La_2O_3 , 487 5.448 Å for Pr_2O_3 , 490 5.441⁴⁹⁰ and 5.445 Å⁴¹³ for Nd₂O₃, 5.431 Å for Sm₂O₃, ^{413, 485} 5.420485 and 5.422 **A 413** for Gd203, 5.411 **413** and 5.406 **AlE6** for Dy_2O_3 , and 5.392⁴¹³ and 5.393⁷Å⁴⁸⁸ for Yb₂O₃. Bevan, Barker, and Martin⁴⁸⁶ found that the lattice parameters in the CeO₂- Y_2O_3 system were proportional to $[YO_{1.5}]$ ² with the constant of proportionality changing at 5% Y_2O_8 (10 $\%$ YO_{1.5}). They suggested that the defects (Y **3+** ions and anion vacancies) interact strongly and that, above about $6\frac{9}{6}$ Y₂O₃, all the point defects are complexed and the complexes begin to interact. Complex lattice parameter dependences were also found in the case of Gd₂O₃, Dy₂O₃, Ho₂O₃, and Yb₂O₃. ⁴⁸⁸

Ternary oxide systems involving CeO₂ might provide useful solid electrolytes. Ceria can dissolve 76% ZrO₂ at 2000° , 496 \sim 60% ZrO₂ at 1750°, 496, 497 50% ZrO₂ at 1550°, 496, 498 and 27% ZrO₂ at 800°.⁴⁹⁹ However, Duwez and Odell⁴⁹⁶ have indicated that the solubility limit is only about 10% ZrO₂ at 1000°. Also, tetragonal ZrO₂ can dissolve about 20% $CeO₂$, 496 , 497 , 499 Ceria and ThO₂ are completely miscible. ^{413, 495, 499, 500} A significant amount of CaO will dissolve in $Ce_{0.75}Zr_{0.25}O_2$ at 1350-1550°,^{501,502} although the reported limit of 40 $\%$ CaO appears somewhat high. The ZrO₂ + 15 $\%$ CaO composition retained its fluorite structure even when *50* % of the ZrO₂ was replaced with CeO₂.³⁸² Equimolar compositions in the $CeO₂-ThO₂-CaO$ and $CeO₂-ThO₂-LaO_{1.5}$ systems were single-phase at 1600°.⁴²¹ It has also been stated that separation into two fluorite phases occurs at very low defect concentrations when one of the cations is present in two valence states, e.g., the CeO₂-ThO₂-Ce₂O₃ system.^{421, 495} However, samples of $(Ce, Th)O_{2-r}$ were single phase after reduction in hydrogen until $x = 0.25$ ⁵⁰⁰

An excellent review about ionic radii, lattice parameters, and solubility limits in $ZrO₂$ -, ThO₂-, and CeO₂-based systems has been written by Moebius.¹

B. ELECTRICAL CONDUCTIVITIES

The limited conductivity data available for $CeO₂$ -based systems are summarized in Table XX. In all cases, the composition having the maximum conductivity is shown. In the $CeO₂ La₂O₃$ system, the conductivity increases rapidly to about 5% La₂O₃ and then increases only slightly beyond this com-

(499) L. Passerini, *Gazz. Chim. Ztal., 60,762 (1930).*

(502) Z. **S.** Volchenkova, V. N. Strekalovskii, and **S.** F. Pal'guev, *Izv. Akad. NaukSSSR, Neorg. Mater., 1,1171 (1965); Inorg. Mater., 1,1073 (1965).*

⁽⁴⁸²⁾ V. N. Strekalovskii, G. V. Burov, V. A. Samarina, S. F. Pal'guev, and Z. S. Volchenkova, *Tr. Inst. Elektrokhim., Akad. Nauk SSSR*, Ural. Filial, 3, 171 (1962); Chem. Abstr., 59, 9385 (1963).

⁽⁴⁸³⁾ E. K. Keler, N. A. Godina, and A. M. Kalinina, *Zh. Neorg. Khim.*, 1, 2556 (1956); *Russ. J. Inorg. Chem.*, 1, 127 (1956); L. S. Zueva, N. A.
Godina, and E. K. Keler, *Ogneupory*, 25, 368 (1960).

⁽⁴⁸⁴⁾ G. Brauer and H. Gradinger, *Naturwissenschaften, 38,559 (1951). (485)* **J.** D. McCullough and J. D. Britton, *J. Amer. Chem. SOC., 74,5225* (*1952).*

⁽⁴⁸⁶⁾ D. J. M. Bevan, W. W. Barker, and R. L. Martin in "Proceedings
of the 4th Conference on Rare Earth Research, Phoenix, Ariz. 1964,"
L. Eyring, Ed., Gordon and Breach, New York, N. Y. 1965, p 441.

⁽⁴⁸⁸⁾ D. **J.** M. Bevan, **W. W.** Barker, and T. C. Parks in ref *486,* **p** *460.*

⁴⁹⁴⁾ G. V. Chandrashekhar, P. N. Mehrotra, G. V. Subba Rao, **E.** C. L ubbarao, and C. N. R. Rao, *Trans. Faraday SOC., 63,1295 (1967).*

⁽⁴⁹⁵⁾ M. Hoch and H. **S.** Yoon in ref *486,* p *665.*

⁽⁴⁹⁶⁾ P. Duwez and F. Odell, *J. Amer. Ceram. SOC., 33,274 (1950).*

⁽⁴⁹⁷⁾ S. M. Lang, R. **S.** Roth, and C. L. Fillmore, *J. Res. Nut. Bur. Stand., 53,201 (1954).*

⁽⁴⁹⁸⁾ **S.** *F.* Pal'guev, **S. I.** Alyamovskii, and **Z.** *S.* Volchenkova, *Zh. Neorg. Khim.,4,2571(1959); Russ.J.Inorg. Chem.,4,118S (1959).*

⁽⁵⁰⁰⁾ H. **J.** Whitfield, D. Roman, and **A.** R. Palmer, *J. Inorg. Nncl. Chem., 28,2817(1966).*

⁽⁵⁰¹⁾ **S.** F. Pal'guev, **S.** V. Karpachev, A. D. Neuimin, and **Z.** *S.* Vol-chenkova, *Dokl. Akad. Nauk SSSR, 134, 1138 (1960); Dokl. Phys. Chem., 134,967(1960).*

ame -1	
-----------	--

Total Conductivities (ohm⁻¹ cm⁻¹ \times 10²) of CeO₂-Based **Electrolytes at lOOO"5**

^aActivation energies (kcal/rnol) are in parentheses. * Measured in air. **c** Extrapolated from **850".** d Extrapolated from 900".

position.^{344, 489, 506} A limited number of measurements have also been reported for the $CeO₂-Y₂O₈$ and $CeO₂-Nd₂O₈$ systems.^{494,506,507} A CeO₂ + 7% Y₂O₃ sample had an activation energy of 19.8 kcal/mol from 360 to 800". **⁴⁹⁴**

The results for the $CeO₂$ -alkaline earth oxide systems are somewhat erratic. The slope changes in Arrhenius plots from 450 to 900" could have arisen from nonequilibrium conditions or impurities. Both Re0 and BaO are virtually insoluble in CeOz, and the conductivities in Table **XX** for these systems are only slightly greater than the conductivity of $CeO₂$.⁵⁰⁵ The conductivity maximum at 15% SrO was also reported in another paper.508 It might be reasonably expected at a lower composition since the solubility limit **488** has been surpassed and, secondly, strong interactions are present between Sr^{2+} ions and anion vacancies.⁵⁰⁹ The interaction energy was estimated at 13.8 kcal/mol.⁵⁰⁹ In addition, the conductivity shown for the 15% SrO composition is inconsistently high and would not be expected (Table I) to exceed that for the 15% CaO solution. From Table **XX,** it is evident that the conductivities of the $CeO₂$ -based solid solutions are comparable to the Zr02-based systems.

Studies of the $Ce_{0.75}Zr_{0.25}O_2$ -CaO system have also been made.^{501,502,510} The conductivity decreased until 8% CaO and then increased to a maximum of 3×10^{-2} ohm⁻¹ cm⁻¹ at 1000 $^{\circ}$ for 30–40 $\%$ CaO. The corresponding activation energy was 18.4 kcal/mol.

Pal'guev and his coworkers⁵¹¹ have published a summary of their electrical conductivity studies on refractory oxide systems based on ZrO_2 , Th O_2 , CeO₂, and Ce_{0.75}Z $r_{0.25}O_2$.

(504) G. Rienaecker and Y. Wu, *Z. Anorg. Allg. Chem.,* 315,121 (1962).

C. TRANSPORT PROPERTIES

At high oxygen pressures, $CeO₂$ -rare earth oxide solutions are anionic conductors.⁵¹² When lower valent cations are introduced into the Ce⁴⁺ sublattice, the formation of anion vacancies is energetically more favorable than the formation of electron holes.61* Measurements of ionic transport numbers in the $CeO₂-Y₂O₃$, $CeO₂-La₂O₃$, and $CeO₂-Nd₂O₃$ systems using oxygen concentration cells⁵⁰⁷ and electrolysis experiments⁵¹⁴ indicated that they are virtually unity near an oxygen pressure of 1 atm. Even for CeO₂ + 2% Y_2O_8 , $t_i = 0.98$ at 1000°.⁵¹⁴ Cation transport numbers are less than 0.004 at 1000-1100°.⁵¹⁴ Unfortunately, n-type conductivity interferes at intermediate oxygen pressures. Emf measurements established that for $CeO₂ + 11\% La₂O₃$, $\bar{t}_1 = 0.93$ at $\bar{P}_{O_2} = 10^{-1}$ atm, but was only 0.54 at $\bar{P}_{0_2} = 10^{-8}$ atm and 1000°.³⁴⁴ At $P_{0_2} = 10^{-16}$ atm and 1000 $^{\circ}$, $t_i = 0.18^{515}$ Also, ionic transport numbers decrease with increasing temperature owing to the reduction of $CeO₂$. 344

An important question to answer is whether or not the presence of anion vacancies helps to stabilize the **Ce4+** ions. At low oxygen pressures

$$
O^{2-} = \frac{1}{2}O_2(g) + V_0^* + 2e'
$$
 (16)

where e' is an excess electron which can be easily accommodated by a Ce⁴⁺ ion. Higher vacancy concentrations will shift this reaction to the left and, of course, the concentration of $Ce⁴⁺$ ions will decrease when the $La₂O₈$ concentration is increased. Therefore, ionic transport numbers should increase. This conclusion contradicts a study of the reduction of *Ce02-* La₂O₃ mixtures in CO-CO₂ atmospheres.⁵¹⁵ However, at \overline{P}_{0_2} = 10^{-8} atm and 1000° , $\bar{t}_1 = 0.90$ for CeO + 33% La₂O₃.²⁴⁴ As expected from eq 16, n-type conductivity varies as P_{0a} ^{-1/4}.⁵¹⁵

At high oxygen pressures, $CeO₂-MgO₃⁹² CeO₂-CaO₄⁵¹⁶$ and $CeO₂-SrO⁵¹⁶$ solid solutions are predominantly ionic conductors from 700 to 1100". A significant fraction of the current was carried by O^{2-} ions during the electrolysis of $CeO₂ +$ 0.86% CaO at 450°⁵¹⁷ and CeO₂ + 3% CaO at 460⁵¹⁸ and 960" **.ri9** A blue-gray discoloration appeared at the cathode and became more pronounced as the CaO content increased.⁵¹⁷ Both current transients at low applied voltages 517 and potential distribution curves at constant currents^{519} could be explained on the basis of *02-* ion migration. The transients were more marked at low oxygen pressures (down to 10^{-4} atm)⁵¹⁷ and high temperatures.⁵¹⁹ By measuring the conductivity of $CeO₂$ + 3% CaO in oxygen and argon, ranges of predominantly ionic (400-600 $^{\circ}$), mixed ionic and p-type (600-800 $^{\circ}$), and mixed ionic and n-type $(>800^{\circ})$ conduction could be noted.⁵¹⁹ The results from a modified gravimetric method demonstrated that cation transport numbers are 0.00 in air at 1100° for $CeO₂$ -alkaline earth oxide systems.⁵²⁰ Again, n-type conductivity predominates at intermediate oxygen pressures. In contact with Fe-Fe_xO and Cu-Cu₂O electrodes $(\overline{P}_{0_2} = 10^{-10.5})$

-
- **(515)** A. D. Neuimin, S. F. Pal'guev, and V. N. Chebotin in ref 51. **p** 79.
- (516) A. D. Neuimin and *S.* **F:** Pal'guev, *Tr. Inst. Elektrokhim., Akad. Nauk SSSR, Ural, Filial,* 3,141 (1962); *Chem. Abstr.,* 59,10852 (1963).
- (517) E. L. Holverson and C. J. Kevane, *J. Chem. Phys.,* 44,3692 (1966).

- (519) R.N. Blumenthal and B. A. Pinz, *ibid.,* 38,2376 (1967).
- (520) L. D. Yushina and **S.** F. Pal'guev in ref 51, p 74.

___- (503) U. Croatto and A. Mayer, *Garz. Chim. Ital.,* 73,199 (1943).

⁽⁵⁰⁵⁾ S. F. Pal'guev and **Z.** S. Volchenkova, *Tr.* Inst. *Elektrokhim., Akad. Nauk SSSR, Ural. Filial, 2,* **157** (1961); *Chem. Abstr.,* 59, 12267 (1963).

⁽⁵⁰⁶⁾ A. D. Neuimin and *S.* F. Pal'guev, *ibid.,* **2.** 185 (1961); *Chem. Abstr.,* 59,8186 (1963).

⁽⁵⁰⁷⁾ A. D. Neuimin and S. F. Pal'guev, *ibid.,* 3, 133 (1962); *Chem. Abstr.,* 59,9417 (1963).

⁽⁵⁰⁸⁾ V. N. Strekalovskii, G. V. Burov, S. F. Pal'guev, **Z. S.** Volchen-kova, and V. A. Samarina, *ibid.,* 3, 165 (1962); *Chem. Abstr.,* 59, 7047 (1963).

⁽⁵⁰⁹⁾ L. M. Solov'eva and V. N. Chebotin in ref 129, p 100.

⁽SlOj *2.* S. Volchenkova and S. F. Pal'guev, *Tr.-inst. Elektrokhim., Akad. Nauh SSSR, Ural. Filial,* **10,** 119 (1967); *Chem. Abstr.,* 69, 71586 (1968).

⁽⁵¹¹⁾ S. F. Pal'guev, A. D. Neuimin, Z. S. Volchenkova, and L. D.
Yushina, Silikaty Okisly Khim. Vys. Temp. Akad. Nauk SSSR, Inst.
Khim. Silikatov, Vses. Khim. Obshch. im D. I. Mendeleeva, 118 (1963);
Chem. Abstr., 62, 143

⁽⁵¹²⁾ U. Croatto, *Ric. Sci.,* 13,830(1942).

⁽⁵¹³⁾ V. N. Chebotin in ref 362, p 109.

⁽⁵¹⁴⁾ A. D. Neuimin and S. F. Pal'guev, *Dokl. Akad. Nauk SSSR*, 143, 1388 (1962); *Dokl. Phys. Chem.*, 143, 315 (1962).

⁽⁵¹⁸⁾ C. J. Kevane, E. L. Holverson, and R. D. Watson, *J. Appl. Phys..* 34,2083 (1963).

am at l000"), values for **ti** of 0.49 and 0.05 at 700 and 1000", respectively, were measured for a $CeO₂$ -MgO sample.⁹²

In the $CeO₂-ZrO₂$ system, although the conductivity was 5×10^{-2} ohm⁻¹ cm⁻¹ at 1000° and 25% ZrO₂,⁵²¹ the ionic contribution was shown to be less than 1% at 1000° from electrolysis experiments⁵²¹ and less than $2-3\%$ at 600-1000° from emf measurements at high oxygen pressures.⁵⁰¹ Recently, a significant ionic contribution was reported for high $ZrO₂$ concentrations and high oxygen pressures.⁵²² For $ZrO₂ + 25\%$ CeO₂, $t_i = 0.53$ and 0.30 at 1027° for $P_{0i} = 10^{-0.5}$ and $10^{-2.5}$ atm, respectively.⁵²² Solid electrolytes are formed by the addition of CaO to $CeO₂-ZrO₂$ solid solutions.^{501,502} The electronic conductivity is markedly lowered due to a stabilization of the **Ce4+** ions and the ionic conductivity is increased. For oxygen pressures near 1 atm, $Ce_{0.75}Zr_{0.25}O_2 + 19\%$ CaO had ionic transport numbers between 0.96 and 1.00 from 600 to 1000° .⁵⁰¹ However, at $\bar{P}_{0_2} = 10^{-10.5}$ atm and 1000°, $\bar{t}_i = 0.30$ for $Zr_{0.70}Ce_{0.80}O_2 + 15\%$ CaO.⁹² Samples of Ce_{0.5}Zr_{0.5}O₂ + 5 or $11 \, \%$ Sc₂O₃ were dominated by n-type conductivity between 1 and 10-16 atm of oxygen at **1000°.201** An investigation of compositions such as $Zr_{0.95}Ce_{0.05}O_2 + 10\%$ Sc₂O₃ might prove interesting. Sufficient $CeO₂$ is added to increase the average cation radius enough to stabilize the fluorite phase. As expected, additions of ThO₂ to CeO₂-La₂O₃ solutions resulted in higher ionic transport numbers at the expense of conductiv $ity.528$

Takahashi524 has briefly reviewed the conductivities and transport numbers of fluorite-type solid solutions.

D. APPLICATIONS

Solutions of $CeO₂-ZrO₂^{897,525}$ and $CeO₂-ZrO₂-CaO³⁹⁷$ have been considered as possible magnetohydrodynamic electrodes. Recently, $CeO₂-La₂O₃$ electrolytes have been used in hightemperature fuel cells. ^{844, 846, 849, 526} At 800 and 1000°, polarization (excluding ohmic polarization) was absent for H_2 , C_2H_6 , and $\rm{C_3H_8}$ fuels, but present for CO and CH4.^{844,526} The polarization of Pt, O_2 electrodes in contact with $CeO_2 + 15\%$ CaO electrolytes at $650-1000°$ has been described.⁵²⁷⁻⁵³⁰ Both concentration polarization,527 resulting from the presence of dense Pt electrodes, and activation polarization⁵³⁰ have been observed. The reduction of $CeO₂$ at the anode interferes with the fuel cell operation, although electronic contributions as high as 10% may be tolerable.⁸⁷² Takahashi, Ito, and Iwahara⁸⁴⁴ improved the stability of $CeO₂$ by increasing the La₂O₃ content, but only at a sacrifice in conductivity. Low open-circuit voltages are inevitable and may only be about 65% of the theoretical value.³⁴⁶ Since $CeO₂-La₂O₃$ electrolytes offer no improvement over $ZrO₂-Y₂O₃$ electrolytes with respect to ionic conductivity, their incorporation into fuel **cells** seems impractical.

-
- *(523)* **T. Takahashi and H. Iwahara,** *Denki Kagaku, 34,906 (1966).*
- *(524)* **T. Takahashi,** *ibid., 36,402 (1968).*
- *(525)* **J. Millet, M. Guillou, and S. Palous,** *Electrochim. Acta, 13, 1425 (1968).*
- *(526)* **T. Takahashi, K. Ito, and H. Iwahara,** *Denki Kagaku, 34, 205 (1966).*
- *(527)* **M. V. Perfil'ev and S. F. Pal'guev** in **ref** *146,* **p** *97.*
- *(528)* **M. V. Perfil'ev and S. F. Pal'guev in ref** *146,* **p 105.**
- *(529)* **M. V. Perfil'ev and S. F. Pal'guev in ref** *362,* **p** *147.*
- *(530)* **M. V. Perfil'ev and S. F. Pal'guevin ref** *362,* **p** *153.*

Before applications of CeO₂-based electrolytes at high oxygen pressures can be justified, more research is required concerning their stability, the level of p-type conductivity, and the oxygen pressures at which n-type conductivity becomes significant.

VI. Hf0,-Based Electrolytes

A summary of the phase studies on $HfO₂$ -based electrolyte systems is given in Table XXI. Hafnia forms solid solutions

Table XXI

Phase Boundaries of Cubic HfO2-Based Solid Solutions

^a Based on La₂Hf₂O₇. b Based on Nd₂Hf₂O₇.

with MgO and CaO and $1:1$ compounds (MHfO₃) with CaO, SrO, and BaO. $586-538$ For directly mixed oxides, about 1400 $^{\circ}$ was required to effect solid solution formation.⁵³⁶ The phase boundaries of the fluorite phase in the HfO_2-MgO system are not well established. For the HfO_2 -CaO system, an upper limit of 20-25 $\%$ CaO at 1600° was also determined.⁵³⁶ At 20% CaO, the stoichiometric, monoclinic compound CaHf₄O₉ has been identified.^{39,539} This compound is stable below 1450° . The cubic solid solutions are unstable below 1450° and decompose into monoclinic HfO₂ and CaHf₄O₉.⁸⁹ Recently, the compound $CaHf₂Zr₂O₉$ was prepared,⁵⁴⁰ but, as mentioned in section II.C, CaZr₄O₉ has not been positively identified. Lattice parameters of 5.106 and 5.112 A have been given for the 10 and 15 % CaO compositions, respectively, while 5.112 **A** was given

- *(537) Z. S.* **Volchenkova and S. F. Pal'guev,** *Tr. Inst. Elektrokhim., Akad. Nauk SSSR, Ural. Filial, 5,133 (1964); Chem. Abstr., 62,8472 (1965).*
- *(538)* **V. N. Strekalovskii, Z. S. Volchenkova, and S. F. Pal'guev,** *Zzv.*
- *Akad. Nauk SSSR, Neorg. Mater., 2,1230 (1966).*
- *(539) Y.* **A. Pyatenko, Dokl.** *Akad. Nauk SSSR. 173,634(1967).*
- *(540)* **C. Delamarre,** *Silicateslnd., 32,345 (1967).*

⁽⁵²¹ S. **F. Pal'guev and Z. S. Volchenkova,** *Zh. Fiz. Khim., 34, 452 (1920); Russ.J.Phys. Chem.,34,211(1960).*

⁽⁵²²⁾ J. Millet and M. Guillou, J. Chim. Phys., 64, 1726 (1967); M. Asquiedge, N. Busson, M. Guillou, M. Jacquin, A. Lecante, J. Millet, S. Palous, and M. Pithon, Rev. Hautes Temp. Refract., 6, 35 (1969).

⁽⁵³¹⁾ **C. E. Curtis, L. M. Doney, and J. R. Johnson,** *J. Amer. Ceram. SOC., 37,458 (1954).*

⁽⁵³²⁾ L. N. Komissarova and F. M. Spiridonov, *Dokl. Akad. Nauk* SSSR, 182, 834 (1968); *Dokl. Chem.*, 182, 864 (1968); G. A. Kalinov-skaya, F. M. Spiridonov, and L. N. Komissarova, J. Less-Common Metals, 17, 151 (1969).

⁽⁵³³⁾ **J. Besson, C. Deportes, and G. Robert,** *C. R. Acad. Sci., Paris, 262. 527(1966).*

⁽⁵³⁴⁾ **L. N. Komissarova, V. I. Spitsyn, and W. Ksn-shih.** *Dokl. Akad.* Nauk SSSR, 150, 816 (1963); L. N. Komissarova, W. Kên-shih, V. I. Spitsyn, and Y. P. Simanov, Zh. Neorg. Khim., 9, 693 (1964); Russ. J. Inorg. Chem., 9, 383 (1964).

⁽⁵³⁵⁾ **F. M. Spiridinov, V. A. Stepanov, L. N. Komissarova, and V. I. Spitsyn, J.** *Less-Common Metals, 14,435 (1968).*

⁽⁵³⁶⁾ **N. A. Godina and E. K. Keler,** *Zh. Neorg. Khim., 4, 884 (1959); Rws. J.Inorg. Chem., 4,401 (1959).*

for the 12% CaO composition in another study.²⁹ They were not found to vary directly with the CaO concentration.⁵⁴¹

Similar to the $ZrO_2-Sc_2O_3$ system, the $HfO_2-Sc_2O_3$ system is quite complex.^{195,532} Three rhombohedral compounds appeared at 12.5, 16.7, and 40% Sc₂O₃, each exhibiting marked nonstoichiometry.⁵³² At 2000 $^{\circ}$, they extended from 9 to 13, 16 to 28, and 31 to 50% Sc₂O₃, respectively. The first two compounds were derived from a rhombohedral distortion of the fluorite lattice in opposite directions. Between them, an undistorted fluorite phase was detected at about 14% Sc₂O₃. The transitions from one structure to another were not continuous. They were separated by narrow two-phase regions.⁵³²

There are no fluorite solid solutions in the $HfO₂-La₂O₃$ system.⁵³⁴ Cubic pyrochlore-type solutions based on $\text{La}_2\text{Hf}_2\text{O}_7$ are adjacent to large two-phase regions on both sides. The boundaries shown in Table XXI for the $HfO_2-Eu_2O_3$ and $HfO₂-Gd₂O₃$ systems contain regions where the solid solutions are ordered. For instance, the pyrochlore phase exists from 28 to 42 and 31 to 41 $\%$ Gd₂O₃ at temperatures of 2000 and 1500°, respectively.⁵³⁵ Continuous transitions occur between these two structures. In another investigation, only 7% Gd_2O_3 was required to stabilize the fluorite phase at 1900°, but 15% Gd₂O₃ was needed at 1500°.⁵⁴² At high temperatures, continuous transitions were observed between tetragonal and cubic HfO₂ solid solutions in the HfO₂-Sm₂O₃ system.⁵⁴³

A maximum conductivity of 2.9×10^{-2} ohm⁻¹ cm⁻¹ at 1000° and 8% Y₂O₃ was found in the HfO₂-Y₂O₃ system.⁵³³ The Arrhenius relationship was obeyed between 900 and 1600" and the activation energy was 25.8 kcal/mol. The conductivity went through a slight minimum at 33% Y₂O₃ leading to speculation about the compound $Y_2Hf_2O_7$. Its existence was also considered in a recent paper about this system.⁵⁴⁴ A sample of HfO₂ + 10% Y₂O₃ which was prepared by melting had a conductivity of 3.5×10^{-2} ohm⁻¹ cm⁻¹ at 1000° and an activation energy of 26.1 kcal/mol.⁶¹ Johansen and Cleary²⁹ measured a conductivity of 0.40×10^{-2} ohm⁻¹ cm⁻¹ at 1000° for HfO₂ + 12 $\%$ CaO. The activation energy was 33.0 kcal/ mol from 800 to 2000°.

Emf measurements at high⁵³⁷ and intermediate $(\sim)10^{-18}$ atm)⁵³³ oxygen pressures have established that $HfO₂$ -based solutions are pure ionic conductors around 1000°. The conductivity of samples containing more than 6% Y₂O₃ was unaffected by oxygen pressure in the range from 1 to 10^{-5} atm.⁵³³ Electron holes, and not anion vacancies, controlled the rate **of** permeation of oxygen through $HfO₂ + 14\%$ CaO.⁸⁹

Before HfO₂-based electrolytes can be properly evaluated, more investigations are needed on their stability and transport properties. However, based on the similarity of $HfO₂$ and $ZrO₂$ and the fact that lower ionic conductivities have been observed in the HfOz-based systems, there appears to be no justifiable reason to conclude that they could offer any significant advantages over ZrO₂-based electrolytes. Hafnia could be used in ternary oxide electrolyte systems. Amounts of 100 , $545,546$

 \sim 40,⁴²⁰ and \sim 30 % HfO₂⁴⁹⁹ will dissolve in ZrO₂, ThO₂, and *(302,* respectively.

VI/. Electrolytes Based on Trivalent Metal Oxides

In this section, solid solutions based on either SCzOa, **YzOa,** or *a* rare earth oxide will be discussed. These oxides have either **the** cubic C-type, monoclinic B-type, or hexagonal A-type structure. The C-type structure, favored by small cations and **low** temperatures, is closely related to the fluorite structure. In the fluorite lattice, each cation is surrounded by a cube of eight anions. The C-type structure can be derived by removing onequarter of the anions and slightly rearranging the remaining ions. For 25% of the cations, the vacancies (interstitial positions with respect to the C-type structure) lie along a body diagonal and the anions are located at the corners of slightly distorted octahedra. All six metal-oxygen distances are equal. For the remaining cations, the vacancies lie along a face diagonal resulting in distorted octahedra and three different metal-oxygen distances. In the case of the larger cations, further distortion results when a seventh anion attempts to squeeze into each octahedron. The resulting B-type or A-type structures are quite complex. In the hexagonal A-type structure, each cation has four close and three more distant oxygen neighbors, while the anions are either four- or five-coordinated.

All of the oxides have the C-type structure at low temperatures and Sc₂O₃, Y₂O₃, and the rare earth oxides from Dy_2O_8 to Lu_2O_3 retain this structure to temperatures in excess of 2000°. However, the oxides from La_2O_3 to Nd_2O_3 revert to the A-type structure at temperatures varying between *500* and 550° for La₂O₃547-549 and 600 and 650° for Nd₂O₃, 550, 551 The oxides from Sm_2O_3 to Dy_2O_3 revert to the B-type structure at temperatures of 850-950° for Sm₂O_{3,}550-552 1100° for Eu₂O₃, 550, 551 1 200-1 250 ° for Gd₂O₃, 550, 551 1 850 ° for Tb₂O₃, 551, 558 and 2150° for $Dy_2O_3.551.558$ Foex and Traverse⁵⁵⁴ found the C-B transformation of Dy_2O_3 at only 1850° and observed A-type Sm_2O_3 and Eu_2O_3 at temperatures above 1850 and 2050°, respectively. All the transformations were concluded to be reversible by several authors,^{551, 552}but others have stated that the transformations occurring below 1500° are irreversible.^{550, 558-555}

A. ADDITIONS OF GROUP IVB OXIDES

As evident in Table XXII, considerable quantities of $ZrO₂$, $HfO₂$, CeO₂, and ThO₂ can be accommodated by the rare earth oxide structures. The solubility limits often increase markedly with temperature. For instance, at 2000°, Y_2O_3 will dissolve 24% ZrO₂¹⁴¹ and 12% ThO₂,⁴¹⁴ while B-Gd₂O₃ will dissolve

(548) V. B. Glushkova and E. K. Keler, *Dokl. Akad. Nauk SSSR,* **152. 611 (1963).**

⁽⁵⁴¹⁾ V. N. Strekalovskii, G. V. Burov, V. A. Samarina, and Z. S.
Volchenkova, *Tr. Inst. Elektrokhim., Akad. Nauk SSSR*, *Ural. Filial*, **5,**
163 (1964); *Chem. Abstr.*, **62,** 7192 (1965).

⁽⁵⁴²⁾ E. N. Isupova, V. B. Glushkova, and E. K. Keler, *Izv. Akad. Nauk SSSR, Neorg. Mater.*, **4,** 1732 (1968).

⁽⁵⁴³⁾ E. N. Isupova, V. B. Glushkova, and K. E. Keler, *ibid.,* **4, 399 (1968).**

⁽⁵⁴⁴⁾ M. Caillet, C. Deportes, G. Robert, and G. Vitter, *Reo. Hautes Temb Refract.,* **4,269 (1967).**

⁽⁵⁴⁵⁾ R. Ruh, H. J. Garrett, R. F. Domagala, and N. M. Tallan, J. *Amer. Ceram. Soc.,* **51,23 (1968).**

⁽⁵⁴⁶⁾ A. M. Gavrish, B. Y. Sukharevskii, P. P. Krivoruchko, and E. I.
Zoz, *Izv. Akad. Nauk SSSR, Neorg. Mater.*, 5, 547 (1969).

⁽⁵⁴⁷⁾ K. Loehberg, *Z. Phys. Chem.,* **28,402 (1935).**

⁽⁵⁴⁹⁾ P. N. Mehrotra, G. V. Chandrashekar, C. N. R. Rao, and E. C. Subbarao, *Trans. Faraday SOC.,* **62,3586 (1966).**

⁽⁵⁵⁰⁾ R. *S.* **Roth and S. J. Schneider, J.** *Res. Nut. Bur. Stand.,* **64A. 309 (1960).**

⁽⁵⁵¹⁾ I. Warshaw and R. Roy, J. *Phys.* **Chem., 65,2048 (1961).**

⁽⁵⁵²⁾ M. W. Shafer and R. Roy, J. *Amer. Ceram. SOC.,* **42,563 (1959).**

⁽⁵⁵³⁾ A. G. Boganov and V. *S.* **Rudenko,** *Dokl. Akad. Nauk SSSR,* **161, 590(1965);** *Dokl. Chern.,* **161,290(1965).**

⁽⁵⁵⁴⁾ M. Foëx and J.-P. Traverse, *C. R. Acad. Sci., Paris*, 262, 636, 743
(1966); *Bull. Soc. Fr. Mineral. Cristallogr.*, 89, 184 (1966); M. Foëx,
Sci. Ceram., 4, 217 (1968).

⁽⁵⁵⁵⁾ V. B. Glushkova and A. G. Boganov, *Izv. Akad. Nauk SSSR*, Ser. *Khim., 1131 (1965). Bull. Acad. Sci. USSR, Div. Chem. Sci., 1101 (1965).*

Table XXll

a 1400". *b* **1300".** The cubic phase has a distorted hexagonal structure in part of this region. **d 1OOO".**

 4% ZrO₂, ¹⁷⁸ and 10% ThO₂. ⁴¹⁶ The presence of a group IVB oxide stabilizes the cubic C-type structure by raising the C-A or C-B transformation temperature. Even C-La₂O₃ and C-Ndz03 phases can be formed at **1500"** by the addition of **47** and 39% CeO₂, respectively, 488 Of course, since higher temperatures favor the B- and A-type structures, more of the group **IV** oxide is required to stabilize the cubic phase as the temperature increases. For example, at 2000° , at least 24% ZrO₂,¹⁷⁸ 20% HfO₂⁵³⁵ and 40% ThO₂⁴¹⁶ are required for the appearance of single-phase C -Gd₂O₃.

From a consideration of the rare earth oxide structures, it is evident that anion interstitials could be incorporated into the lattice quite readily. This defect model has been verified for $Y_2O_3-ZrO_2$,⁵⁵⁶ $Y_2O_3-CeO_2$,⁵⁵⁷ Y_2O_3 -ThO₂,⁴¹⁴ and Gd₂O₃-ThO₂⁴¹⁶ solid solutions. Such systems are potential anionconducting solid electrolytes. However, the anions are much less mobile in these structures than the fluorite structure⁴⁸⁸ and the appearance of p-type conductivity at high oxygen pressures might be impossible to suppress. The cell air Y_2O_3 + 10% ThO₂|O₂ yielded values for \bar{t}_i of only 0.18 and 0.34 at 1000 and 1400°, respectively.⁴¹⁴ Their behavior at intermediate and low oxygen pressures has yet to be determined.

B. ADDITIONS OF ALKALINE EARTH OXIDES

According to Table **XXIII,** appreciable quantities of the alkaline earth oxides will dissove in the rare earth oxide structures at high temperatures. However, the solubilities become quite restricted at low temperatures.^{559,561-568} Some solid solubility has also been indicated between MgO and B-Sm₂O₃, CaO and

(561) .H. E. Otto in **"Phase Diagrams for Ceramists," M.** K. **Reser, Ed., American Ceramlc Society, Columbus,** Ohlo, **1964, p 11 1.**

- **(563) T. H. Etsell and S.** N. **Flengas,** *J. Electrochem. Soc.,* **116, 771** (**1969).**
- **(564) F. Queyroux,** *Reu. Hautes Temp. Refract.,* **6, 111 (1969).**

(565) T. L. Barry, V. S. Stubican, and R. Roy, *J. Amer. Ceram. SOC.,* **49, 667 (1966).**

(566) F. Queyroux, *C. R. Acad. Sci., Paris,* 261, 4430 (1965) ; *Rev. Hautes*
Temp. Refract., 2, 307 (1965).

Table XXIIl

Solubilities of the Alkaline Earth Oxides in Sc_2O_3 **,** Y_2O_3 **, and the Rare Earth Oxides**

^aNear the fusion temperature.

B-Sm₂O₃, and CaO and B-Gd₂O₃ at 1500°,⁵⁶⁷ and between CaO and the B-type modifications of the oxides from Tb_2O_3 to Yb_2O_3 (excluding Tm_2O_3) after melting.⁵⁶⁸ Any significant solubility has been denied between MgO and Y₂O₃ at 1650°,⁵⁶⁹ CaO and YiOa at **1650°,668** MgO and LazOa at **2OOO570** and **1400°,26** CaO and Laz03 at **185OS66** and **1400°,26** MgO and Gd_2O_3 at 1500°,⁵⁶⁷ and SrO and C-Gd₂O₃, Dy₂O₃, and Yb₂O₃ at all temperatures.⁵⁶⁴ The disagreement between these results and those shown in Table **XXIII** indicate that equilibrium is very difficult to achieve in these systems and should be approached from the high-temperature side, unless reactive

⁽⁵⁵⁶⁾ R. J. Bratton, *J. Amer. Ceram. Soc.***, 52, 213 (1969).
(557) W. W. Barker and A. F. Wilson,** *J. Inorg. Nucl. Chem.***, 30, 1415**
(1968).

^{\$58)} **S. G. Tresvyatskii, L. M. Lopato, and** *2.* **A. Yaremenko,** *Porosh. et., Akad. Nauk Ukr. SSR,* **4,29 (1964).**

⁽⁵⁵⁹⁾ J. E. Bauerle, J. Hrizo, and R. J. Ruka in ref 71, *p* **11.**

⁽⁵⁶⁰⁾ W. Trzebiatowskii and R. Horyn, *Bull. Acad. Polon. Sci., Ser. Sci. Chim.,* **13,315 (1965).**

⁽⁵⁶²⁾ M. Fob, *Bull. SOC. Chim. Fr.,* **109 (1961).**

⁽⁵⁶⁷⁾ C. E. Curtis and J. R. Johnson, *J. Amer. Ceram. SOC.,* **40, 15 (1957).**

⁽⁵⁶⁸⁾ M. *Fob, Bull. SOC. Fr. Mineral. Cristallogr.,* **88,521 (1965).**

⁽⁵⁶⁹⁾ C. E. Curtis. *J. Amer. Ceram. SOC.,* **40,274(1957).**

⁽⁵⁷⁰⁾ S. G. Tresvyatskii and L. M. Lopato, *Vop. Teor. Primen. Redkozemel Metal., Akad. Nauk SSSR*, 155 (1964); *Chem. Abstr.*, 62, 5940 (1965); Z. A. Yaremenko, L. M. Lopato, and S. G. Tresvyatskii, *Eksp. Tekhn. Mineral.*

oxide powders are prepared.⁵⁶³ Consequently, the evidence against solid solubility cannot be regarded as conclusive, especially in cases where reaction was attempted at only 1100°.⁵⁷¹

With respect to the different rare-earth oxide structures, divalent metal oxides have the opposite effect to tetravalent metal oxides in that they stabilize the B-type with respect to the C-type modification. Single-phase B-type Dy_2O_3 forms at 1800" upon the addition of **20%** Ca0.566 However, the solutions undergo a eutectoid decomposition at 1500° into $CaDv_2$ - O_4 and C - Dy_2O_3 . The eutectoid temperature is just below the fusion temperature in the Yb_2O_3 -CaO system.⁵⁶⁶ Compounds are formed except in the systems involving $La₂O₃$ or MgO,⁵⁷² although two compounds in the La_2O_3-SrO system were recently identified.573

Via density measurements, the anion vacancy model has been verified for La_2O_3 -CaO solid solutions,^{562,563} although some of the Mg^{2+} ions may reside in interstitial positions in Sc_2O_3-MgO solid solutions.⁵⁵⁹ Only a very limited amount of conductivity data is available for these systems. In the La_2O_3 -CaO system, maximum ionic conductivities of 1.9×10^{-2} ⁵⁷⁴ and 2.4 \times 10^{-2 563} ohm⁻¹ cm⁻¹ at 1000° for the 15% CaO composition have been reported. The corresponding activation energies were 14.7 and 20.3 kcal/mol, respectively. Although solutions having this composition are unstable at 800- **1200°,56622563** very little CaO is required to produce **a** high level of ionic conductivity. At 5% CaO (\sim 1 $\%$ anion vacancies), the conductivity is 2.0×10^{-2} ohm⁻¹ cm⁻¹ at 1000° .⁵⁶³ This value is between 80 and **230** times larger than the conductivities reported for the Sc_2O_8 -CaO, Y_2O_8 -CaO, and Sm_2O_8 -CaO systems at a similar vacancy concentration. *201* Associated activation energies were 33.5, 33.5, and 20.5 kcal/mol, respectively. The anions are much more mobile in the hexagonal A-type structure than the cubic C-type structure. According to Pauling,⁵⁷⁵ one-third of the anions in La_2O_3 are unusually far from their nearest neighbors $(2.69 \text{ Å} \text{ from the nearest})$ La³⁺ ions and 3.21 Å from the nearest O^{2-} ions). These anions may be extremely mobile. Nevertheless, in the La_2O_3 -CaO system, the conductivity increases only slightly past 3% CaO. In metastable solid solutions, there may be a marked tendency toward vacancy clustering and, also, vacancy ordering would tend to occur at relatively low defect concentrations in structures in which all the oxygen sites are not equivalent.

No further comparisons are justified until more data are available. If the monoclinic B-type structure was present in the Sm_2O_3 -CaO system,²⁰¹ it appears that solid solutions having the A-type structure offer the only chance of achieving a high level of ionic conductivity.

Both conductivity measurements as a function of oxygen pressure and emf measurements have been used to show that the solid solutions are ionic conductors at intermediate oxygen pressures and mixed p-type and ionic conductors at high oxygen pressures.^{201,563,574} For La_2O_3 -CaO electrolytes, ionic transport numbers of 0.54 and 0.99 at 1000° and oxygen pressures of 1 and 10^{-8} atm, respectively, have been found for samples containing more than 2% CaO.⁵⁶³ n-Type conductivity was not observed at 10^{-21} atm of oxygen and 1000° .⁵⁶³

- **(572) T.** L. Barry and *R:* Roy; *J.Znorg. Nucl. Chem.,* **29,1243 (1967).**
- **(573) L. M.** Lopato, V. N. Pavlikov, and L. I. Lugin, *Zh. Neorg. Khim.,* **14,861 (1969);** *Russ. J. Inorg. Chem.,* **14, 449 (1969).**
- **(574) S. F.** Pal'guev and *2.* **S.** Volchenkova in ref **129,** p **107. (575** L. Pauling, *Z. Kristallogr.,* **69,415 (1929).**

Systems based **on** trivalent metal oxides may be useful for determining thermodynamic properties of systems which exert low oxygen potentials or for measuring the oxygen content in liquid metals or high-temperature gases. In this regard, C-type structures are desirable because of their excellent resistance to hydration.^{552,569} A-Type oxides hydrate rapidly, although the presence of an alkaline earth oxide in solution greatly reduces this tendency.^{562,563} More research is required on the stability and transport properties of these electrolytes before such possibilities can be fully evaluated.

An investigation of rhombohedral Bi_2O_8 -SrO solid solutions has been reported.576 An extrapolation of an Arrhenius plot to 650° indicates that the conductivity of $Bi_2O_3 + 20\%$ SrO would be 10^{-2} ohm⁻¹ cm⁻¹. However, at an oxygen pressure of about 1 atm and 600°, the ionic transport number was only 0.7 while the reduction of $Bi₂O₃$ interfered at intermediate oxygen pressures.

Perovskite structures based on LaAlO₃ containing MgO²⁰¹ or CaO^{577,578} and SrZrO₃ containing Sc₂O₃²⁰¹ exhibit almost pure ionic conduction at intermediate oxygen pressures and are potential alternative oxide electrolytes.

VIII. Transport Properties **of** *Refractory Oxides*

Oxides which exhibit only small deviations from stoichiometry are often exclusively ionic conductors within restricted ranges of purity, temperature, and oxygen pressure. A brief discussion of their transport properties will comprise the remainder of this review.

A. Be0

The cells air $BeO|O_2$ at 1000-1300⁵⁷⁹ and 1200-1700^{°580} and 66% CO + 34% CO₂|BeO|O₂ at 1000-1300^{°579} have shown that Be0 is essentially an ionic conductor. Investigations to determine transport numbers with a Hittorf-type experiment,⁵⁸¹ cation diffusion coefficients,⁵⁸²⁻⁵⁸⁶ and anion diffusion coefficients^{583, 587} have indicated that BeO is a cation conductor. Excellent correlation between electrical conductivity data^{579,584,588-590} and cation diffusion coefficients using the Nernst-Einstein relation can be found above 1100". The correlation coefficient of 0.80⁵⁹⁰ verifies the vacancy mechanism for cation migration.^{582, 583, 585, 586}

The remaining question concerns the extrinsic or intrinsic origin of the lattice vacancies. The conductivity is independent

- **(577)** F. Forrat, **G.** Dauge, P. Trevoux, G. Danner, and M. Christen, *C. R. Acad. Sei., Paris,* **259,2813 (1964).**
- **(578) T.** Takahashi and H. Iwahara, *Denki Kagaku,* **35,433 (1967).**
- **(579) S.** F. Pal'guev and A. D. Neuimin, *Fir. Tuerd. Tela,* **4; 855 (1962);** *SOL'. Phys.-Solid State,* **4,629 (1962).**
- **(580)** C. F. Cline, J. Carlberg, and H. W. Newkirk, *J. Amer. Ceram.* **Soc., 50,55 (1967).**
- (581) S. F. Pal'guev and L. D. Yushina, *Tr. Inst. Elektrokhim., Akad. Nauk SSSR, Ural. Filial*, **3,** 149 (1962); *Chem. Abstr.*, **59**, 8231 (1963).
- **(582) H. J.** de Bruin and G. M. Watson, *J. Nucl. Mater.,* **14,239 (1964).**
- **(583) S. B.** Austerman, *ibid.,* **14,248 (1964).**
- **(584)** H. **J.** de Bruin, *G.* M. Watson, and C. M. Blood, *J. Appl. Phys.,* **37,4543 f1966).**
- **(585) S.** B. Austerman and J. W. Wagner, *J. Amer. Ceram.* Soc., **49,94 (1966).**
- **(586)** R. **H.** Condit and Y. Hashimoto, *ibid,,* **50,425 (1967).**
- **(587) J.** B. Holt, *J. Nucl. Mater.,* **11,107 (1964).**
- **(588)** A. W. Pryor, *ibid.,* **14,258(1964).**
- **(589) D. H.** Bradhurst and H. *J.* de Bruin, *ibid.,* **24,261 (1967).**
- **(590)** C. F. Cline and H. W. Newkirk, *J. Chem. Phys.,* **49,3496 (1968).**

⁽⁵⁷¹⁾ K. R. Bkhargava, L. M. Kovba, L. I. Martynenko, and V. I. Spitsyn, *Dokl. Akad. Nauk SSSR*, **153**, 1318 (1963); **161,** 594 (1965); *Dokl. Chem.,* **161**, 294 (1965);

⁽⁵⁷⁶⁾ A. ,D. Neuimin, L. D. Yushina, Y. M. Ovchinnikov, and **S.** F. Pal'guev in ref **5 1,** p **92.**

of oxygen pressure from 1 to 10^{-10} atm at $1300^{\circ 579}$ and, therefore, vacancy concentration changes arising from eq 9 and 16 are unimportant. Impurity-controlled vacancy concentrations have been suggested^{584,585} and, recently, proven conclusively.^{588,590} Aluminum and silicon are the major impurities which dissolve in the cation sublattice and create cation vacancies. Above 1200-1500°, depending **on** the impurity content, the activation energy for conduction is due solely to vacancy migration. Both cation diffusion coefficients⁵⁸⁶ and conductivities⁵⁹⁰ vary linearly with the vacancy concentration. At lower temperatures, the activation energy increases because of vacancy-impurity association or precipitation of impurities.^{585,586,590} Cline and Newkirk⁵⁹⁰ suggested that the latter may be more important.

Extrinsic electronic conduction may be present below about 1200" in relatively impure samples. Intrinsic ionic conduction appears to be absent even at 2135°.686 To observe this region, higher purity BeO is required. However, it was absent at 1700° in a sample containing $\langle 25 \rangle$ atomic ppm total impurities and only 8 atomic ppm of Al and Si.690 The energies of intrinsic defect formation are very high in BeO.⁵⁸⁸

B. MgO

In 1959, Mitof^{591} found that an Arrhenius plot for pure MgO crystals $(\sim]$ 30 atomic ppm total impurities), when extrapolated to 1400-1600°, coincided with cation diffusion data.⁵⁹² Ouite different behavior resulted for more impure specimens. *Also,* higher impurity levels lead to more pronounced conductivity minima at an oxygen pressure of 10^{-5} atm, indicating that impurities play a dominant role in transport processes.⁵⁹¹ The oxygen pressure dependences could not be rationalized without assuming the presence of a pressure-independent contribution. Since 1960, a considerable amount of emf data has become available, indicating that this contribution was ionic conductivity.

Emf measurements on the cell Fe, $Fe_zO|MgO|Ni$, NiO have resulted in values for t_i of 0.96⁵⁹³ and 0.82⁵⁹⁴ at 1100° and 0.9 at 1040°.⁵⁹⁵ For this cell, $\bar{P}_{0} = 10^{-11}$ –10⁻¹² atm. However, higher temperatures favor electronic conduction. For the cell air $MgO|O_2$, Mitoff⁵⁹⁶ measured values for \bar{t}_1 of 0.9, 0.5, and 0.15 at 1000, 1300, and 1500°, respectively. Later, using a guard ring to protect against surface conduction, he obtained values of 0.88, 0.59, and 0.33 at 1016, 1292, and 1510°, respectively, for this cell.⁵⁹⁷ Pal'guev and Neuimin⁵⁷⁹ reported a value of 0.87 at 1300". Activation energies **of** 46.2 and **81.5** kcal/mol for ionic and electronic conduction, respectively, have been determined.⁵⁹⁶ At 1290°, a maximum ionic transport number of 0.65 occurred at \bar{P}_{0} , $\sim 10^{-5}$ atm,⁵⁹⁶ although a figure of 0.95 has also been given for these conditions.⁵⁷⁹ Low oxygen pressures also favor electronic conduction. For instance, $t_1 = 0.20$ for $\bar{P}_{0_2} = 10^{-10}$ atm at 1290^{°596} and for \overline{P}_{0_1} = 10⁻²² atm at 1040°.⁵⁹⁵ From an analysis of conductivity data,⁵⁹¹ Schmalzried⁵⁹⁸ calculated that P_{\oplus} (P_{0} , where σ_i = σ_p) = 10^{-2.2} atm and $P_{\ominus} = 10^{-6.5}$ atm at 1300°.

- *(596)* **S. P. Mitoff,J.** *Chem. Phys., 36,1383 (1962). (597) S.* **P. Mitoff,** *ibid.,41,2561(1964).*
- *(598)* **H. Schmaluied,** *Z. Physik. Chem.* **(Frankfurt am Main),** *38,* **87** *(1963).*

Because of high, and often unstated, impurity contents, the electrical properties of MgO and other refractory oxides are either difficult or impossible to appraise. Generally, impurities increase the electronic contribution, although they can significantly affect the ionic conductivity by altering the number of lattice defects. Based on transport number experiments⁵⁸¹ and diffusion coefficients for Mg^{2+} ⁵⁹² and O^{2-} ⁵⁹⁹ ions, Mg^{2+} migration is responsible for the ionic current (excluding the possibility of impurity ions). Mitoff⁵⁹⁶ observed that the addition of Li to MgO lowered the ionic transport number. The introduction of Li+ ions on the cation sublattice will lower the cation vacancy concentration, thereby lowering the ionic conductivity. Higher conductivities due to the presence of $Fe³⁺$ ions^{591,600} may have been partially caused by an increase in the number of cation vacancies. An investigation of the effect of ions such as Sc^{3+} and Al^{3+} would be interesting. Intrinsic cation conductivity may occur at the higher temperatures since intrinsic Mg^{2+} diffusion has been observed between 1400 and 1600°.592 The activation energy was 79 kcal/mol. High ionic transport numbers near an oxygen pressure of 1 $atm^{579,596,597}$ may be possible because of strong interactions between electron holes and cation vacancies.

Davies⁶⁰¹ concluded that O^{2-} ions are the charge carriers at certain oxygen pressures from the similarity between the activation energy for electrical conductivity and extrinsic O^{2+} diffusion. However, the conductivities were about three orders of magnitude too high to be accounted for by O^{2-} migration. Despite the agreement between Lewis and Wright's results⁶⁰² at $400-750$ ^o and other conductivity data⁵⁹¹ extrapolated to these temperatures, extrinsic electronic conduction undoubtedly predominated in their relatively impure MgO (99.9%) .

As a solid electrolyte, MgO would be valuable at steelmaking temperatures, but the preceding discussion indicates that such an application is impractical because of high electronic transport numbers. Consequently, results concerning the activity of oxygen dissolved in molten iron $608-606$ must be considered qualitative only, although a significant ionic contribution in MgO at high temperatures has been indicated.^{87,605-607} However, Mitoff⁵⁹¹ concluded from an electrolysis experiment that ionic transport was negligible at 1600". It would be interesting to determine transport numbers of very pure MgO ($>99.999\%$), although intrinsic electronic conduction arising from thermally created defects could interfere above 1500°.596

(603) **M. Ohtani and K. Sanbongi,** *Tetsu To Hagane, 49,22 (1963).*

⁽⁵⁹¹⁾ S. **P. Mitoff,J.** *Chem. Phys., 31,1261 (1959).*

⁽⁵⁹²⁾ **R. Lindner and G.** D. **Parfitt,** *ibid., 26,182 (1957).*

⁽⁵⁹³⁾ **H. Schmalzried,** *ibid., 33,940 (1960).*

⁽⁵⁹⁴⁾ S. **P. Mitoff,** *ibid., 33,941 (1960).*

⁽⁵⁹⁵⁾ **C.B.Alcockinref34,p** *109.*

⁽⁵⁹⁹⁾ **Y. Oishi and W. D. Kingery,** *J. Chem. Phys., 33,905 (1960); 34, 688 (1961).*

⁽⁶⁰⁰⁾ D. M. **Shakhtin, E. V. Levintovich, T. L. Pivovar, and G. G. Eliseeva,** *Teplofiz. Vys. Temp., 5,510 (1967); High Temp.* **(USSR),** *5,454 (1967).* **(601) M.** *0.* **Davies,J.** *Chem. Phys., 38,2047 (1963).*

⁽⁶⁰²⁾ **T. J. Lewis and A. J. Wright,** *Brit. J. Appl. Phys.* **(Ser.** *2),* **1,** *441 (1968).*

⁽⁶⁰⁴⁾ V. P. Luzgin, A. F. Vishkarev, and V. I. Yavoiskii, *Izv. Vyssh. Ucheb. Zaved. Chern. Met.*, 6 (5), 44 (1963); *Chem. Abstr.*, **59**, 7192
(1963); *Izv. Vyssh. Ucheb. Zaved. Chern. Met.*, 6 (9), 50 (1963); *Chem. Abst*

⁽⁶⁰⁵⁾ **V. I. Yavoiskii, A. F. Vishkarev, and V. P. Luzgin,** *Teor. Prakt. Intensifik. Protsessoo Konuerterakh Martenousk. Pechakh, 7 (1965); Chem. Abstr., 66,13144(1967).*

⁽⁶⁰⁶⁾ **V. I. Yavoiskii, A. P. Vishkarev, V. P. Luzgin, A. G. Frolov, and M. F. Panin,** *Sb. Mosk. Znst. Stali Splauou,* **No.** *41, 112 (1966); Chem. Abstr., 65,16496 (1966); Optimizatsiya Met.Protsessoo,* **No.** *1,66(1967); Chem. Abstr.. 70.89932(1969).*

⁽⁶⁰⁷⁾ **V. P. Luzgin, A.** *G.* **Frolov, A. F. Vishkarev, V. I. Yavoiskii, L. V. Vinogradova, and** D. **S. Rutman,** *Ogneupory, 30.42 (1965).*

C. CaO

Calcium oxide has been found to be an amphoteric semiconductor at 600608 and 800-1000" **609** with the p-n transition at oxygen pressures of 10^{-5} ⁶⁰⁸ and 10^{-2} ⁶⁰⁹ atm. An analysis⁶¹⁰ of Rudolph's results⁶⁰⁹ indicated that $P_{02}^{\pm 1/4}$ dependences were obeyed near the p-n transition and that a considerable fraction of ionic conductivity was present. Current passage through CaO is accompanied by oxygen evolution 611 and cells of the type Fe-O $|CaO|$ air yielded appreciable emf values.⁶¹² Nevertheless, there is no established pattern for the magnitude of the ionic contribution. From emf measurements, \vec{t}_i = 0.5-0.6 at \bar{P}_{0} ~ 1 atm and 1100-1300°,⁵⁷⁹ 0.6-0.9 at \bar{P}_{0} = 10^{-5} -10⁻⁸ atm and 900-1300°,⁵⁷⁹ and 0.6-0.7 at $\bar{P}_{0_2} = 10^{-1}$ 10^{-14} atm and 800-1000°.^{92,501} However, a comparison of the electrical conductivities calculated from the Nernst-Einstein 10^{-14} atm and $800-1000^{\circ}$, $92,801$ However, a comparison of the electrical conductivities calculated from the Nernst-Einstein relation using Ca²⁺ diffusion data $(D \sim 10^{-14} \text{ cm}^2/\text{sec} \text{ at }$ cm2/sec at $(20000000$ electrical conductivities calculated from the Nernst-Einstein
relation using Ca²⁺ diffusion data $(D \sim 10^{-14} \text{ cm}^2/\text{sec} \text{ at }$
 $1000^\circ)^{613-615}$ and measured directly at $P_{0_2} \sim 10^{-4} \text{ atm}^{615}$
indicated that the in indicated that the ionic contribution is less than 2% at 950- 1400° ⁶¹⁵ Although this comparison does not account for anion transport, the portion of ionic conduction attributed to $Ca²⁺$ migration, determined from $Ca²⁺$ transport numbers, accounted for all the ionic conductivity.613 These transport numbers, measured by a gravimetric method, were only 0.01-0.001 at 900-1400 $^{\circ}$.^{613,614} It is interesting that the activation energy measured by Surplice⁶¹⁶ is similar to that for Ca²⁺ diffusion,^{613,614} although he attributes the conductivity to either electrons or O^{2-} ions.

Since errors arising from emf measurements such as electrode polarization or gas leakage between electrode compartments lead to low ionic transport numbers, it is evident that under certain conditions the ionic transport in CaO is very significant. To define these conditions properly, the effect of impurities must be studied.

D. SrO and BaO

p-Type conductivity predominates at high oxygen pressures for these oxides $609,617,618$ and only a small ionic contribution is present.⁶¹⁰ For SrO, $\bar{t}_i = 0-0.1$ at $\bar{P}_{0i} \sim 1$ atm and 1000-1200°.679 However, ionic transport becomes significant at intermediate oxygen pressures for SrO^{579,610} and $\bar{t}_i = 0.6{\text -}0.9$ at $\bar{P}_{0_2} = 10^{-6} - 10^{-8}$ atm and 900-1200°.⁵⁷⁹ Oxygen ions are probably the ionic current carriers. A defect structure has been proposed for SrO postulating the predominance of Frenkel disorder on the anion sublattice. 619 Oxygen interstitials are very mobile in this oxide.⁶¹⁹

- **(609)** J. Rudolph, *Z. Naturforsch.,* **14A, 727 (1959).**
- **(610) V. N.** Chebotin, **Z.** S. Volchenkova, and S. F. Pal'guev in **ref 362,** p **123.**
- **(611) A. B.** Kiselev and B. P. Nikonov, *Radiotekhn. Elektron.,* **7, 1585 (1962).**
- **(612)** W. **A.** Fischer and W. Ertrner, *Arch. Eisenhuettenw.,* **37, 427 (1966).**
- **(613)** R. Lindner, *Acta Chem. Scand.,* **6,468 (1952).**
- **(614)** R. Lindner, *J. Chem. Phys.,* **23,410 (1955);** *Z. Naturforsch.,* **10A, 1027(1955).**
- **(615) Y. P.** Gupta and L. J. Weirick, *J. Phys. Chem. Solids, 28,* **⁸¹¹** (**1967).**
- **(616)** N. **A.** Surplice, *Brit. J. AppLPhys.,* **17,175 (1966).**
- **(617) J.** Rudolph, *2. Naturforsch.,* **13A, 757 (1958).**
- **(618) A. B.** Kiselev and B. P. Nikonov, *Radiotekh. Elektron.,* **11, 1886 (1966).**
- **(619)** W. D. Copeland and R. **A.** Swalin, *J. Phys. Chem. Solids.,* **29,313 (1968).**

E. Sc_2O_3 , Y_2O_3 , AND THE RARE EARTH OXIDES

The conductivity of $Y_2O_{3,5^{507}}$ $La_2O_{3,5^{507,609,620,821}}$ $Nd_2O_{3,5^{507,620}}$ $Sm₂O₃$ ⁶²⁰ and $Gd₂O₃$ ⁶²¹ increases as the oxygen pressure is increased, indicative of p-type conductivity. From electrolysis experiments *in vacuo* ($P_{0₂} \sim 10^{-8}$ atm) at 600°, Noddack and Walch^{621,622} concluded that $t_i < 0.05$ and usually $t_i < 0.01$ for the rare earth oxides. Linear current-voltage curves **from** 0 to *5* **V** in air or vacuum at 600-1300° supported this conclusion,^{621,622} although electrode-gas reactions could have prevented charge buildup at the electrodes. However, ionic conduction predominates in these oxides at low temperatures and intermediate oxygen pressures.^{507,598,623,624} Schmalzried⁵⁹⁸ demonstrated that Sc_2O_3 , Nd_2O_3 , Sm_2O_3 , and Yb_2O_3 exhibit purely ionic conduction at 800-1000° in cells of the type Fe, $Fe_2O|M_2O_3|Ni$, NiO. Tare and Schmalzried⁶²⁸ used galvanic cells with gas electrodes to define the parameters P_{\oplus} and P_{\ominus} for Y₂O₃, Sm₂O₃, Gd₂O₃, and Dy₂O₃ at 667-930°. For all the oxior Y_2O_3 , Sm_2O_3 , Gd_2O_3 , and Dy_2O_3 at 667–930°. For all the oxides, $P_{\oplus} = 10^{-2}$ –10⁻⁴ atm and $P_{\ominus} < 10^{-19}$ atm except Dy_2O_3 for which $P_{\oplus} \sim 10^{-9}$ atm. Therefore, $t_1 > 0.9$ from for which $P_{\oplus} \sim 10^{-9}$ atm. Therefore, $t_1 > 0.9$ from $P_{0_2} = 10^{-6}-10^{-8}$ atm to $P_{0_2} < 10^{-15}$ atm.

Impurities play a dominant role in ionic conduction. For 99.996 $\%$ Y₂O₃, $t_i = 0.30$ at 700[°] and 0.15 at 800[°] and an oxygen pressure of 10^{-15} atm.⁶²⁵ The purity of Y₂O₃ was 99.9 $\%$ in Tare and Schmalzried's investigation.628 Higher temperatures virtually eliminate the ionic contribution. For Y_2O_3 , it was less than 1% from 10^{-1} to 10^{-17} atm of oxygen and $1200-1600^{\circ}$.⁶²⁵ No emf was produced from the cell air $|Y_2O_3|O_2$ at 1000-1400 $^{\circ}$.⁴¹⁴ Similarly, ionic transport in Sc₂O₃ is only significant at low temperatures.626

An analysis⁶¹⁰ of conductivity data for $La_2O_3^{609}$ indicated that p-type conductivity obeyed a $P_{0₂}^{1/4}$ dependence. This dependence has been verified for $La_2O_3^{563}$ and also found for Nd₂O₃.^{154,507} Whenever only small deviations from stoichiometry occur, which must be the case if ionic transport numbers are significant,⁵⁹⁵ this proportionality will be observed regardless of the predominant lattice defects if they are fully ionized. At $P_{Q_2} = 1$ atm and 1000°, $t_i = 0.09$ for 99.99% La₂O₃.⁵⁶³ Somewhat higher ionic transport numbers **(0.2-0.3)** have been reported for 99.9% La₂O₃ under similar conditions.^{507,574,610} Again, the ionic conductivity appears to be impurity controlled. The ionic transport number increases to 0.91 at an oxygen pressure of 10^{-8} atm and would become almost 0.99 at 10^{-12} atm except that n-type conductivity appears below 10^{-11} atm at 1000°.568 Higher temperatures favor electronic conduction. The very weak oxygen pressure dependences for $B-Gd₂O₃$ and Dy,Oa observed by Rappale from 1 to **10-7** atm at 1000" could be indicative of a significant ionic contribution.

The ionic conductivity in La_2O_3 has been attributed to O^{2-} ion migration.⁵⁶³ Diffusion coefficients for oxygen in $A-Nd_2O_3$ and B-Sm₂O₃ are about 10⁻⁹ cm²/sec at 1000[°],⁶²⁷ indicating that the anions are very mobile in the hexagonal A-type and monoclinic B-type rare earth oxide structures. For cubic

- **(621)** W. Noddack and H. Walch, *Z. Elektrochem.,* **63,269 (1959).**
- **(622)** W. Noddack and **H.** Walch, *Z. Phys. Chem.* (Leipzig), **211,194 (1959).**

- **(626)** W. C. Tripp and N. M. Tallan, *Bull. Amer. Ceram. SOC.,* **47, 355 (1968).**
- **(627)** G.D.Stone,G.R. Weber,andL.Eyringinref91,p **179.**

⁽⁶⁰⁸⁾ K. Hauffe and *G.* Traenckler, *Z. Phys.,* **136,166 (1953).**

⁽⁶²⁰⁾ M. Fogx, *C. R. Acad. Sci., Paris,* **220,359 (1945).**

⁽⁶²³⁾ V. **B.** Tare and H. Schmalzried, *Z. Phys. Chem.* (Frankfurt am Main), **43,30 (1964).**

⁽⁶²⁴⁾ R. **A.** Rapp, *U. S. At. Energy Comm.,* **C00-1440-3,33** pp **(1967). (625)** N. **M.** Tallan and R. W. Vest, *J. Amer. Ceram. SOC.,* **49, 401** *(1* **966).**

C-type oxides, anion diffusion coefficients are also about 0^{-9} cm^2/sec at $1000°$, 628, 629 whereas cation self-diffusion coefficients in Y_2O_3 and Er_2O_3 are about 10^{-14} and 10^{-17} cm²/sec, respectively, at 1000° (extrapolated from 1400°).⁶³⁰ Anion interstitials are more mobile than anion vacancies.629 **In** the C-type structure, the anion interstitial positions form nonintersecting strings in the $\langle 111 \rangle$ directions along which the anions can move rapidly.

It is evident from the preceding discussion that Sc_2O_3 , Y_2O_3 , and the rare earth oxides will function as solid electrolytes under certain conditions. The fuel cell $NH_a Pr_6O_{11}$ air yielded an emf of 400-420 mV at 750°,⁶³¹ and an electrochemical cell has been described in which the solid electrolyte was essentially **y208.632**

\mathbf{F} . \mathbf{ZrO}_2 and \mathbf{HfO}_2

Considerable disagreement exists pertaining to transport numbers in both monoclinic⁶³³⁻⁶³⁵ and tetragonal^{633,636,637} $ZrO₂$. Ionic transport numbers will be highest at oxygen pressures near the oxygen pressure corresponding to the minimum conductivity since the ionic conductivity is virtually **un**affected by oxygen pressure in this region.⁶³⁸ Conductivity minima have been reported at 10^{-9} ⁶³³ and 10^{-16} ⁶³⁴ atm at 1000° for monoclinic ZrO₂ and at 10^{-4} , 637 10^{-6} , 638 and 10^{-7} 636 atm at 1300 $^{\circ}$ for tetragonal ZrO_2 . The minima shifted to higher oxygen pressures at higher temperatures $(1300-1700)$,⁶³⁶ although they were also shown to be essentially temperature independent from 1230 to 1330° 638 and 1200 to 1500°.637

A $P_{02}^{1/s}$ dependence found by Rudolph⁶⁰⁹ at $1-10^{-4}$ atm and 900-1000" has been analyzed to be a combination of p-type conductivity obeying a $P_{\text{o}_2}^{1/4}$ law and a pressure-independent ionic contribution.⁶¹⁰ The cell Fe, $Fe_xO|ZrO_2|Cu$, Cu₂O indicated that $t_i = 0.9$ from 600 to 950°.^{92,501} However, t_i < 0.01 at an oxygen pressure of 10^{-2} atm and $1000^{\circ}.634$ Nonlinear Arrhenius plots⁶³⁵ cannot be taken as evidence of mixed conduction.

For tetragonal ZrO_2 , a polarization technique involving dc conductivity measurements at zero and infinite time led to values for t_i of 0.9 and 0.4 at $P_{0_2} = 10^{-9}$ atm and 1300 and 1600°, respectively.⁶³⁶ The ionic transport number reached 0.55 at $P_{0_2} = 10^{-4}$ atm and 1600°,⁶³⁶ although intrinsic semiconduction has been observed above this temperature.⁶³⁹ McClaine and Coppel⁶³⁷ did not find the polarization technique applicable because of electrode-gas reactions and space charge polarization, but estimated that *ti* could be **0.4-0.5** at

- **(630)** M. **F.** Berard and D. R. Wilder, *ibid.,* **52,85 (1969).**
- **(631) 0.** Erlmetsa and A. Johansson, *Suomen Kemistilehti,* **40, 93 (1967).**
- **(632)** C. C. McPheeters, J. *C.* McGuire, and R. Tercovich, U. *S.* Patent **3,309,233** (Dec **30, 1964).**
- **(633) P.** Kofsad and D. **J.** Ruzicka, *J. Electrochem. SOC.,* **110, 181 (1963).**
- **(634) R.** W. Vest, N. M. Tallan, and **W.** C. Tripp, *J. Amer. Ceram. SOC.,* **47,635 (1964).**
- **(635) E. D.** Whitney,J. *Electrochem. SOC.,* **112,91(1965).**
- **(636) R.** W. Vest and N. M. Tallan, *J. Amer. Ceram. SOC.,* **48, 472 (1965).**
- **(637) L.** A. McClaine and C. P. Coppel, *J. Electrochem. SOC.,* **113, 80** (1966) .
- **(638)** D. **L.** Douglass and C. Wagner, *ibid.,* **113,671 (1966).**

(639) A. Guillot and A,-M. Anthony, *Reo. Hautes Temp. Refract.,* **1, 325 (1964);** A.-M. Anthony, A. **Guillot,** and P. Nicolau, *C. R. Acad. Sci., Paris, Ser. B,* **262, 896 (1966).**

 P_{O_2} \sim 10⁻¹³ atm and 1200° from differences between ac and dc conductivities. Therefore, little doubt exists that $ZrO₂$ is a mixed conductor.

Fully ionized zirconium vacancies634 and oxygen vacan cies⁶³⁶ have been postulated to be the predominant defects at high and low oxygen pressures, respectively. The ionic current carriers in ZrO₂ are not known with certainty, but O^{2-} ions are probably responsible.⁶³⁷ However, a suggestion that ionic conductivity arises from a coupled transport of oxygen vacancies and interstitials⁶³³ has been discredited.⁶⁴⁰ Moebius⁷⁶ has briefly discussed the conductivity of ZrO₂.

Also for HfO2, results are in substantial disagreement. **A** complex oxygen pressure dependence and a conductivity maximum at $P_{0_2} = 10^{-8}$ atm and 900-1300° has been reported.⁶³³ For purer HfO₂ samples, Tallan, Tripp, and Vest⁶⁴¹ found a minimum conductivity at 10^{-10} atm and 1500° which shifted to lower pressures at lower temperatures. They determined that the conductivity was essentially electronic from 1000 to 1500°. Yet, from galvanic cell measurements, $t_i = 0.01, 0.02$, 0.71, and 0.94 at 1000° and $\bar{P}_{01} = 10^{-1}$, 10^{-3} , 10^{-8} , and atm, respectively.⁶⁴² These data were consistent with conductivity measurements at high oxygen pressures.⁶⁴² At 1000 $^{\circ}$ and $\bar{P}_{02} = 10^{-8}$ atm, a value for \bar{t}_1 of 0.59 has also been given.⁹⁹ In addition, almost pure ionic conduction was indicated at 700 to 1000° from measurements on the cell $CO₁CO₂/HfO₂/O₂$ where $CO/CO_2 = 200/1.643$

p-Type conductivity at high oxygen pressures, proportional to $P_{Q_2}^{1/s}$, has been accounted for with a model involving fully ionized hafnium vacancies, $641,642$ but the mechanism of ionic transport has not been clarified. Higher purity samples must be studied before definite statements can be made concerning the suitability of $ZrO₂$ of $HfO₂$ as solid electrolytes.

G. CeOz

Anionic conduction appears in $CeO₂$ only at low temperatures and high oxygen pressures. However, even under these conditions, $CeO₂$ is predominantly an n-type semiconductor.⁶⁰⁹ Emf measurements have shown that ionic transport numbers are 0.1-0.2 at P_{0_2} \sim 1 atm at 700-1000[°].^{501,507} The cation transport number was less than 0.004 at 1100°.⁵¹⁴ Electrolysis experiments, $622,644$ the presence of ohmic behavior, $619,622$ and the absence of voltage-time transients⁵¹⁹ have indicated that ionic conduction in $CeO₂$ is insignificant.

H. ThO₂

Polarization arising from the passage of dc current through ThO₂ crystals held under vacuum at $600-1300^\circ$ was linked to ionic transport.⁶⁴⁵ Although p-type conductivity, proportional to $P_{02}^{1/4}$, 89, 424, 425, 610 prevails at high oxygen pressures, 646 con-

(640) P. J. Harrop and J. N. Wanklyn, *J. Electrochem. Soc.,* **110, 1285 (1963).**

⁽⁶²⁸⁾ C. D. **Wirkus, M. F.** Berard, and D. R. Wilder, *J. Amer. Ceram. SOC.,* **50,113 (1967).**

⁽⁶²⁹⁾ M. F. Berard, C. D. Wirkus, and *D.* R. Wilder, *ibid., 51,* **643** (**1968).**

⁽⁶⁴¹⁾ N. M. Tallan, W. C. Tripp, and R. **W.** Vest, *J. Amer. Ceram. Soc.,* **50,279 (1967).**

⁽⁶⁴²⁾ *G.* Robert, **C.** Deportes, and J. Besson, *J. Chi,w. Phys.,* **64, 1275 (1967).**

⁽⁶⁴³⁾ V. N. Chebotin, Z. S. Volchenkova, and S. F. Pal'guev, Tr. Inst.
Elektrokhim., Akad. Nauk SSSR, Ural. Filial, 5, 123 (1964); Chem. Abstr., 62, 4734 (1965).

⁽⁶⁴⁴⁾ I. V. Vinokurov, Z. N. Zonn, and V. A. Ioffe, *Izv. Akad. Nauk*
SSSR, Neorg. *Mater.*, 3, 1012 (1967); *Fiz. Tverd. Tela*, 9, 3369 (1967);
Sov. Phys.-Solid State, 9, 2659 (1968).

⁽⁶⁴⁵⁾ W. E. Danforth, J. Chem. Phys., 23, 591 (1955); W. E. Danforth and J. H. Bodine, J. Franklin Inst., 260, 467 (1955); W. E. Danforth, ibid., 266, 483 (1958).

⁽⁶⁴⁶⁾ M. FoEx, *C. R. Acad. Sci., Paris,* **215,534(1942).**

duction is almost exclusively ionic at intermediate oxygen pressures. The conductivity of ThO₂ was independent of oxygen pressure below 10^{-8} atm at 1000° ⁴²⁴ and below 10^{-12} atm at 800-1100 $^{\circ}$.⁴²⁵ n-Type conductivity appeared at 10^{-22} atm and 1000'. **⁴²⁵**

In the cell Co, $CoO | ThO₂|Ni, NiO, t_i > 0.9$ for ThO₂ at 800-1100°.⁴²⁵ Lower values are found when ThO₂ contacts a Cu-Cu₂O electrode $(P_{0_2} = 10^{-6.2}$ atm at 1000°).^{92,99,425} No more than 10% ionic conduction remains at an oxygen pressure of 1 atm.^{414,425,610} Donneaud³²⁶ set up the cell O_2 Th O_2 $Na_2Si_2O_5|ZrO_2-MgO|O_2$ which involved Th O_2 and ZrO_2 -MgO tubes dipping into the silicate melt. If $ThO₂$ were an electronic conductor, the cell emf would be dependent on the oxygen pressure over the melt, whereas ionic conduction would be indicated by a dependence of the emf on the oxygen pressure inside the $ThO₂$ tube. However, an inconsistently high value for the ionic transport number of $ThO₂$ of 0.8 at an oxygen pressure of about 1 atm and 1250° was determined.

The fluorite lattice can accommodate large concentrations of anion vacancies and interstitials 647 and permits the anions to move much more easily than the cations. 135 Anion and cation diffusion coefficients are 10-11 **648** and 10-17 649 cm2/sec at 1000 $^{\circ}$, respectively. The entire electrical conductivity of ThO₂ above 1100" was accounted forby using anion diffusiondata. **⁴³³** The anionic conductivity is extrinsic since the lattice defect concentration is controlled by aliovalent impurities. Bauerle **⁴²** successfully extrapolated a log σ_i *vs.* log $[\text{YO}_{1.5}]$ plot for ThO₂- Y_2O_3 solid solutions to the known impurity content of ThO₂ (400 ppm cation impurities). The major impurities were $Ce³⁺$ ions. Ullmann⁴³³ claimed to have observed intrinsic ionic conduction above 1100° , but did not give an analysis for his $ThO₂$ specimens. Theoretical calculations made by Chebotin⁵¹⁸ indicated that Schottky defects are energetically much more favorable than Frenkel defects **on** the anion sublattice in both $ThO₂$ and $CeO₂$.

I. Al₂O₃

Generally, Al_2O_3 is an electronic conductor, although impure samples exhibit mixed conduction.⁶⁵⁰⁻⁶⁵² Pappis and Kingery⁶⁵³ ruled out ionic conductivity at 1300-1750° because of the much greater mobilities of electronic defects compared to ionic defects. **A** comparison of measured and calculated conductivities using the Nernst-Einstein relation indicated that neither O²⁻ ions⁶⁵⁴ nor Al³⁺ ions⁶⁵⁵ were mobile enough to contribute significantly. Hittorf-type experiments at 1550-1750° tribute significantly. Hittorf-type experiments at 1550–1750°
showed that $t_{A1^*} \le 0.05$.⁶⁵⁴ Also, no ionic contribution could
be detected at $P_{0_2} \sim 1$ atm and 1250°.^{326,387}
Chan investigation at the political de

Other investigators have reported significant ionic conduction in Al_2O_3 from emf measurements at 1170⁵⁹⁸ and 1550 $^{\circ}$.⁸⁷ Matsumura⁶⁵² found that $t_i \sim 0.8$ at $P_{0i} \sim 1$ atm and 900°. Although both he and Schmalzried⁵⁹⁸ demonstrated that Al_2O_8

Electrical Properties of Solid Oxide Electrolytes

a. Electrical Conductivities

becomes a predominantly electronic conductor above 1300°, Fischer and Ackermann⁶⁵⁶ have recently reported anion transport numbers of 0.6-0.7 at 1600-1700 $^{\circ}$ for Al₂O₃ tubes containing molten aluminum and dipping into molten iron.

La₂O₃-CaO 1000 10⁻⁸ to <10⁻²¹ 55, 563

Self-diffusion studies of O^{2-} ions⁶⁵⁷ and Al^{3+} ions⁶⁵⁸ in $Al₂O₃$ indicate that the cations are more mobile. However, grain boundaries markedly increase the anion mobility⁶⁵⁷ which could become important in fine-grained Al₂O₃.⁶⁵⁹ From thermoelectric measurements and approximate activation energy calculations, Matsumura⁶⁵² accounted for the ionic transport by the migration of triply ionized aluminum vacancies of extrinsic origin. The possibility of mobile ionic impurities should not be neglected.

As for MgO, results obtained from galvanic cells having Al₂O₃ electrolytes^{605,606,660,661} can be considered qualitative only.

J. SiOz

Fused $SiO₂$ is an ionic conductor from 1 to 10^{-16} atm of oxygen at 1000°598 by virtue of the migration of impurities, usually Na⁺ ions.^{662,663} The diffusion coefficient for oxygen is about 10-14 cm2/sec at 1 *OO0°.66* **a, 664**

⁽⁶⁴⁷⁾ L. E. **J.** Roberts in "Non-stoichiometric Compounds," L. Man delcorn, Ed., Academic Press, New York, N. *Y.,* **1964, p 66; Sci.** *Cerum.,* **4,329 (1968).**

⁽⁶⁴⁸⁾ H. F. Edwards, A. F. Rosenberg, and J. T. Bittel, NASA Docu-
ment N63-20,007, 1963, 146 pp.

⁽⁶⁴⁹⁾ R. J. Hawkins and C. B. Alcock, *J. Nucl. Muter.,* **26,112(1968);**

⁽⁶⁵⁰⁾ T. Arizumi and **S.** Tani, *J. Phys. Soc. /up.,* **5,442 (1950).**

⁽⁶⁵¹⁾ J. Cohen, *Bull. Amer. Ceram.* **Soc., 38,441 (1959).**

⁽⁶⁵²⁾ T. Matsumura, *Can. J. Phys.,* **44,1685 (1966).**

⁽⁶⁵³⁾ J. Pappis and W. D. Kingery, *J. Amer. Ceram. Soc.,* **44,459 (1961).**

⁽⁶⁵⁴⁾ W. **D.** Kingery and *G.* E. Meiling, *J. Appl. Phys.,* **32,556 (1961).**

⁽⁶⁵⁵⁾ P J. Harrop and R. H. Creamer, *Brit. J. Appl. Phys.,* **14, 335 (1963).**

⁽⁶⁵⁶⁾ W. A. Fischer and **W.** Ackermann, *Arch. Eisenhuettenw.,* **39, 273 (1968).**

⁽⁶⁵⁷⁾ *Y.* Oishi and **W.** D. Kingery, *J. Chem. Phys.,* **33,480 (1960).**

⁽⁶⁵⁸⁾ A. E. Paladino and W. D. Kingery, *ibid.,* **37,957 (1962).**

⁽⁶⁵⁹⁾ A. **E.** Paladino and **R.** L. Coble, *J. Amer. Ceram.* **Soc., 46, 133** (1 **963).**

⁽⁶⁶⁰⁾ V. I. Musikhin, 0. **A.** Esin, and B. M. Lepinskikh, *Zh. Prikl. Khim.,* **31,689** (1958).

⁽⁶⁶¹⁾ E. F. Mazurov, V. **A.** Salautin, B. **I.** Ponomarev, **S.** M. Gnuchev, and T. A. Izmanova, *Zauod. Lab.,* **33,952 (1967).**

⁽⁶⁶²⁾ V. Garino-Canina and M. Priqueler, *Sillcures Ind.,* **26,565 (1961).**

⁽⁶⁶³⁾ E. W. Sucov, *J. Amer. Ceram.* **Soc.,46,14(1963).**

⁽⁶⁶⁴⁾ E. L. Williams, *ibid.,* **48,190(1965).**

IX. Summary and Conclusions

The important electrical properties of solid oxide electrolytes are summarized in Table XXIV. In fuel cells where perhaps *⁵* or **10%** electronic conduction can be tolerated but high ionic conductivities and cell voltages are required, only ZrO₂-based electrolytes are suitable, although CeO₂-based systems may be acceptable in some cases. The stability of $ZrO₂-Sc₂O₃$ electrolytes must be thoroughly investigated before their potentialities can be fully evaluated. Small additions of either ThO_2 or Y_2O_3 may serve to fully stabilize them without seriously affecting their conductivities.

For high-temperature thermodynamic measurements, more than 1% electronic conduction will seriously affect the results. Together, the ZrO_{2^-} and Th O_2 -based electrolytes satisfactorily cover the entire oxygen pressure range normally encountered. Investigations of ionic transport numbers as a function of temperature and oxygen pressure are very helpful since correction factors can be applied to emf measurements for small electronic contributions. However, the purity of the oxide materials must be carefully controlled since the presence of easily oxidized or reduced impurities can drastically affect transport numbers and render reproducibility impossible. Several authors have discussed the emf's obtainable from galvanic cells involving solid electrolytes exhibiting mixed $condition.$ 66, 96, 404, 407, 598, 665-674

Solid solutions based on the **A-,** B-, or C-type rare earth oxide structures may, for certain applications, provide alternative electrolytes to those based on the fluorite structure. The oxides Sc_2O_3 , Y_2O_3 , La₂O₃, Nd₂O₃, Gd₂O₃, Dy₂O₃, Ho₂O₃, $Er₂O₃$, and $Lu₂O₃$ offer the best possibilities because of the stability of the trivalent cations. Further research on such systems should be of considerable scientific, and perhaps practical, interest.

Within certain restricted ranges of temperature and oxygen pressure, BeO, MgO, ThO₂, Sc₂O₃, Y₂O₃, and the rare earth oxides are essentially pure ionic conductors. Soluble impurities are necessary to achieve a significant level of ionic conductivity. With the exception of BeO, the influence of impurities on the electrical behavior of the refractory oxides has not been adequately determined. More research is required in this direction before transport mechanisms can be properly defined.

Acknowledgment. Financial assistance from the Defence Research Board of Canada is gratefully acknowledged.

⁽⁶⁶⁵⁾ C. Wagner,Z. *Elektrochem.,* 60,4(1956).

⁽⁶⁶⁶⁾ C. Wagner in "Proceedings of the 7th Meeting of the International
Commission on Electrochemistry, Thermodynamics, and Kinetics,
Lindau, 1955," Butterworth Scientific Publications, London, 1957, p 361. (667) K. Kiukkola and C. Wagner, *J. Electrochem. SOC.,* 104,308 (1957).

⁽⁶⁶⁸⁾ C. Wagner, *Aduan. Electrochem. Electrochem. Eng.,* 4,1 (1966).

⁽⁶⁶⁹⁾ S. V. Karpachev and S. F. Pal'guev in ref 27, pp 63,73,79.

⁽⁶⁷⁰⁾ **S.** F. Pal'guev, V. N. Chebotin, and **S.** V. Karpachev, *Tr. Inst. Elektrokhim., Akad. Nauk SSSR, Ural. Filial, 2,* 145 (1961); *Chem. Abstr.,* 58,12162(1963).

⁽⁶⁷¹⁾ *S.* V. Karpachev and S. F. Pal'guev, *Topl. Elem., Nekot. Vop.* Teor., Akad. Naūk SSSR, Inst. Elektrokhim., 137 (1964); Chem. Abstr., Teor., 1965); S. V. Karpachev and S. F.
62, 14173 (1965); S. V. Karpachev and S. F. Pal'guev in "Fuel Cells;
Their Electrochemical Kinetics," V. S. Bago

⁽⁶⁷²⁾ A. A. Vecher and **D.** V. Vecher, *Dokl. Akad. Nauk Beloruss. SSR,* $11,610(1967)$.

⁽⁶⁷³⁾ V. N. Chebotin, S. V. Karpachev, and **S.** F. Pal'guev in ref **362** p 137.

⁽⁶⁷⁴⁾ V. N. Chebotin and S. F. Pal'guev in ref 129, p **128.**